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This paper describes new Monte Carlo codes for proton transport simulations in
complex geometrical forms and in materials of different composition. The SRNA
codes were developed for three dimensional (3D) dose distribution calculation in
proton therapy and dosimetry. The model of these codes is based on the theory of

proton multiple scattering and a si

le model of compound nucleus decay. The

developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first
code simulates proton transport in combined geometry that can be described by planes
and second order surfaces. The second one uses the voxelized geometry of material
zones and is specifically adopted for the application of patient computer tomography

data. Transition probabilities for both ¢

are given by the SRNADAT program.

In this paper, we will present the models and algorithms of our programs, as well as
the results of the numerical experiments we have carried out applying them, along
with the results of proton transport simulation obtained through the PETRA and

GEANT progr

ams. The simulation of the proton beam characterization by means of

the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained
by our program indicate the imminent application of Monte Carlo techniques in

clinical practice.

Key words: proton multiple scatteving, pavticles emission from compound nuclet decay, 3D Monte
Carlo proton transport, CT data conversion and usage in proton thevapy planing,
proton beam chavacterization by Favaday Cup

INTRODUCTION

There is increasing evidence that Monte Carlo
based programs are the most powerful tool in nu-
clear particles transport calculations. A growing
number of medical physicists believe that, in the
future, routine dose calculation will be performed
using Monte Carlo methods [1, 2], which will prove
to be dominant vehicles for dose computation in
radiotherapy treatment planning [1]. The most
powerful feature of the Monte Carlo method is the
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possibility of simulating all individual particle inter-
actions in three dimensions and performing numeri-
cal experiments with preset errors. These facts were
the motivation behind the development of the gen-
eral-purpose Monte Carlo program SRNA for pro-
ton transport simulation. Some of the applications
of the SRNA program are: (a) proton therapy, (b)
design of accelerator driven systems, (c) radioiso-
topes production for medical applications, (d)
simulation of proton scatterer and degrader shapes
and composition, and (e) radiation protection on
accelerator installations. A wide range of SRNA
code applications has required the development of
the SRNA-2KG code and the SRNA-VOX code.
The first one is intended for proton transport simu-
lations in technical systems described by standard
geometrical forms (sphere, cone, cylinder, cube).
The second was designed for radiotherapy calcula-
tions of deposited energy distribution in in-patients
on the basis of computer tomography (CT) data.
Both codes are capable of using 3D proton sources
with an arbitrary energy spectrum within an interval
of 100 keV to 250 MeV, while transition prob-
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abilities are obtained through the SRNADAT pro-
gram. In the first part of this paper, a description of
a common model of proton transport for both codes
is presented. Further on, the results of numerical
experiments performed by the SRNA-2KG code
are compared with the results of well known
GEANT and PETRA programs. A good agreement
of all said results was demonstrated. Deposited
energy distribution for a 65 MeV proton beam
irradiation of the patient's eye, as calculated by
SRNA-VOX, is presented in several CT slices. For
the purpose of simulating a therapeutic proton
beam characterization by the Multi-Layer Faraday
Cup (MLFC), the SRNA-2KG program was used
at the Indiana University Cyclotron Facility
(TUCF). An excellent coincidence between meas-
ured and simulated results has demonstrated the
good features of the MLFC as a measuring device.
By adding the cross section of the positron emitter
creation, the same program has enabled the Brook-
haven National Laboratory to simulate the spatial
distribution of these emitters a step ahead of the
estimation of proton dose distribution by positron
emission tomography. The said programs are writ-
ten in Fortran 77, run on PC and are distributed on
a single floppy disk.

PROTON TRANSPORT MODEL

The simulation of proton transport is based
upon the multiple scattering theory of charged par-
ticles [3, 4, 5], energy losses with fluctuation [6, 7]
and our model of compound nucleus decay simula-
tion after proton absorption in nonelastic nuclear
interactions.

Energy losses, proton step and
energy scale

In order to simulate proton transport, the
proton trajectory is divided into small steps, whose
length As is determined by a small energy loss AE

~ Ef dE
g (dE | dx),,

n+l

As (1)

Energy loss AE = E, — Ey4 1s chosen to be
several percents of the initial proton energy. The
conditions for the implementation of the multiple
scattering theory and the calculation of energy loss
with its flucruations demand that the energy scale
be partially linear and partially logarithmic. Energy
E ek, which splits the energy scale into a linear and
a logarithmic part, can be arbitrarily chosen. The
PTRAN [8] program model shows that the best
results are obtained with E,; amounting to about

10 MeV. The volume and the quality of energy and
angular distributions are determined by the energy
scale choices. According to our experience, the best
energy scale is obtained with AE,, average energy
loss at about 0.05 . Stopping power (dE/dx) can
be obtained from ICRU49 [9], or calculated accord-
ing to the Ziegler empirical formulae [9].

After the energy scale is prepared, it is neces-
sary to modify it. Firstly, the average number of
collisions on step As must be greater than the mini-
mal value (29 > 10), according to the multple
scattering theory conditions. Secondly, Vavilov's
parameter x must be lesser than the maximal value
(x < 20). After a few iterations, both conditions can
be met and the energy scale definitely prepared for
the calculation of proton transition probabilities.

Energy loss fluctuation

Usually, the probability density function and
distribution functions are calculated in the follow-
ing order: the probability density function first and
after that, the density function is calculated from the
probability density function. The SRNA code uses
another approach [10] whereby the distribution
function is directly calculated. The starting point of
our calculations is the function given by Vavilov in
the following form [6]:

1
f(ds,4) = Zzrexpx(l +p*C|-

: ({ exp(ic; )cos(yA +xf dy

fi = P’liny-Ci(y)]-cosy-ySi(y) .

fo = y[Iny—Ci(y)] +sin y + B>Si(y)
'q‘i :K(fl —yzD"!gmax)

A = (A = Ay)E + A, denotes the distribution
parameter, A — probable energy loss, and A, -
average energy loss. The other terms in (2) have the
following meaning:

As Z.

=21, m,c*pN, = Zw, =~

5 P ﬁ2 i JA;'
Ay =-1+C-p* -Inx (3)

2m,c*p?

Kzé"lgmax Emax = 1_[32
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where p is density, N, - Avogadro's number, r, —
clasical electron radius, m, — electron rest mass, Z;,
Aj, and wj; are atomic number, atomic weight, and
weight fraction of the ™ constituent, As — proton
step, C = 0.5772156649... is Euler's constant, £may
is the maximum amount of energy which a proton
can lose with a free orbital electron, Si(x) and Ci(x)
are integral sine and cosine, and D is Shulek’s cor-
rection [7]

=35l memc P (L) &)

for the influence of electron orbits on the dis-
tribution. In (4) I, is the excitation potential of
the electron orbit and g, is the ratio of the
number of orbital electrons to the total number
of electrons.

In order to calculate the distribution function,
eq. (2) should be first integrated over 4. So, ob-
tained function is transformed in form suitable for
numerical integration by the Gauss-Kronrod algo-
rithm. The choice of integration limits over y and
step depends on the characteristics of this function.
The quality of the integration is estimated by the
following numerical parameters: absolute error
equal to 1077, relative error equal to 107 and
distribution normalization onto 0.999999. Under
these conditions Y, = 100 and 4 takes a value
between -5 and 35.

Vavilov's distribution function obtained in
this way is shown in Fig. 1. Shulek’s correction
has effect in the case of higher atomic numbers
causing the spread of distribution. It is neces-
sary to calculate at least 256 values of inverse
distribution using approximation with cube
spline.
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Figure 1. Vavilov's distribution function of fluctuation
of average energy loss in water

Proton angular distribution

The angular distribution of multiple scattered
protons was obtained through the integration of
Moliere's density function. This density function is
derived in form of order [4, 5] with parameter
B-In(B) = In(2) where £ denotes the average
number of collisions on step 4s

1 2% fie)
FO)=o pLlde pre O

In eq. (5) =06/ xcﬁ denotes a reduced
angle and f,(p) are Moliere's functions given by:

§ 2 i e 2
fnl@) = gdy{%mﬂ JG(W)GXP(—yTJ (6)

For compound materials, the Moliere screen-
ing angle is given by:

AN m, 7+l ; Zj?'
Ze =%Nal fe pr 2(e42) | 777 A

In (7) N, denotes Avogadro number, r, and
m, are the classical radius and rest mass of electron,
M is the mass of the proton, t = E,/Mc? is the
reduced kinetic energy of the proton, w; the weight
fraction of element Z; and atomic weight A4;, and As
is the proton step. We have calculated functions (6)
in the interval 0 < ¢ < 40 by using the Gauss-Kron-
rod algorithm again. Inverse Moliere distributions
were calculated similarly to Vavilov's inverse distri-
butions. Angular proton distributions for 4 values
of proton energy E, are shown in Fig. 2.
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Figure 2. Angular distributions of multiple scattered

protons in water
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Nonelastic nuclear interactions

Nonelastic nuclear interactions are rare events,
but they are very important for the correct modeling
of proton transport. In order to simulate nonelastic
nuclear interactions in materials, the cross sections
of all constitutive elements of these materials must
be known. For a limited number of elements, these
cross sections [11] are available in the energy range
from the threshold to 150 MeV, and in ICRUTAB
[9, 12] up to 250 MeV. Judging by current trends
in the development of therapy planning tools based
on the Monte Carlo technique, we can expect the
expanding of the cross section data.

Using available data, we established a model
for nonelastic nuclear reaction simulation and for
secondary particle emission. That model has the
following steps: (1) determination if the nonelastic
reaction event occurs, (2) selection of a nucleus with
which a proton interacts and energy is transferred
to the nucleus, (3) probable number of secondary
particles, and (4) energy and angle of the secondary
particles emitted. For every single step, we need the
distribution described here.

Average number of nonelastic
nuclear interactions

The average number of interactions on proton
step As is calculated according to the following relation:

N, E dE
aB)=p— leBgras  ®

where p is the density, N, is Avogadro's number, A
is atomic weight, o(E) is the nonelastic nuclear
interaction cross section, and dE/dx is the total
stopping power. Figure 3 shows the average number
of nonelastic nuclear interactions with the proton in
160'
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Figure 3. The average number of nonelastic proton
interactions in 10

Probable nucleus of interaction
and its recoil energy

The probable nucleus j with which a proton
will enter into a nonelastic nuclear reaction is deter-
mined, by the discrere cumulative distribution
P;=3p; where p;=(80;)/(Z8:0k) are the
probabilities for nucleus i whose weight contribu-
tion is g m is the total number of nuclei within the
material. ICRUTAB [9] data contain the values of
recoil energy E,;, par nonelastic nuclear reactions of
the proton with that nucleus. If the energy of the
proton was E, before a reaction, the created com-
pound nucleus occurs with energy E, - E, and
energy E,; is deposited at the site of the reaction.

Secondary particle emission

When a compound nucleus is created, accord-
ing to Chadwick’s model, it will decay by simulta-
neous emission of neutrons, protons, deuterons,
tritons, alpha-particles and photons. For every sin-
gle particle emitted, a mean multiplication factor Fy,
exists in the ICRUTAB data. If we accept that for
such rare events Poisson’s distribution is adequate,
we can determine the probable number of particles
emitted for every single type of particle. Such a
model demands that for every single type its prob-
able number of secondary particles must be found,
even in the case when F,, is of a very small magni-
tude. Our model of compound nucleus decay simu-
lation comprises all possible combinations of emis-
sion for all of the six secondary particles mentioned
above and for each proton energy.

Energy and angle of secondary particles

From the double differential cross section one
can obtain the energy and angular distribution by a
common procedure for numerical integration. In
our model, we have used the energy spectrum al-
ready prepared in ICRUTAB for inverse energy
distribution calculations, as the one used in the case
of Vavilov’s and Moliere’s distributions. In this way,
we have made easier the procedure for angular
distribution determination, which also is inverted
in the same manner. For a type of secondary parti-
cles given in advance, with energy E,, from inverted
distribution, one can choose the energy of that
particle E, and the angle of its emission @g,. For
every single type qf secondary particles, one has to
check if the sum 2 (E,,), of energies of the secon-
dary particles N is less or equal to proton energy E,,.
When that sum is greater then the proton energy,
N-1 addend has to be subtracted and compound
nucleus decay simulation terminates. The mean
value of the remaining proton energy is very close
to the g value of the reaction. In the TERA project,
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the 250 MeV proton transport simulation in a tissue
equivalent phantom was performed with GEANT
and LAHET codes. In these simulation, an average
deposited energy is 232.83 + 4.3 MeV, with a cut
in energy of 10 MeV. The SRNA-2KG simulation,
in some phantoms, with a cut in energy of 100 keV,
gives 226 + 7.4 MeV.

Only secondary protons are included in the
transport simulation model, while deuterons, tri-
tons and alpha particles are deposited on the spot.
Neutrons and photons are not included in the said
transport model. They are registered in the data file
where each line contains: the index of the particle,
energy, (X, y, z)-coordinates, sine and cosine of
polar and azimuthal angles. This data file can be
used by the MCNP4B program [13] in order to
simulate neutron and photon transport or by
FOTELP [14] and PENELOPE [15] programs to
simulate photon transport only.

Change of proton direction

At the end of each proton step, the direction
of the proton changes. This change of direction is
specified in terms of polar §' and azimuthal ¢'
angles, within a coordinate system whose polar axis
coincides with the direction of the motion of the
proton at the beginning of the step. The polar angle
is sampled from Moliere's distribution, the az-
imuthal angle from an uniform distribution in 2.
Direction cosines at the end of the proton step are
usually calculated according to Berger’s model [3].

Change of proton position

The coordinates of a proton after passing step
As within the local coordinate system are given by
Berger [8]

Ax = %[sinS' cos’ +7,(6z,16)"]
As . 5 4 2 1/2
Ay:E-[smS sing'+y,(6,, /6)"] (9)

Az = %(1 +cosd")

where ' and @' are polar and azimuthal angles and
va = #2(B-12) is the approximation of the mean-
square multiple scattering deflection.

Position of the event along the step

On step As, a proton can lose energy AE, or
be absorbed in nonelastic nuclear interactions. Den-
sity functions along the step of these events are
unknown. We assumed an uniform distribution of
these events. This is more realistic than the usual

assumption that these events take place at the end of
a proton step.

Borderline between zones

The lengths of proton steps As,, are calculated
in advance according to (1) for each material. In
some cases, the length of a proton step may be larger
than the distance L to the zones borderline, calcu-
lated in the direction of proton transport. In the
nearest material, the proton step and other con-
densed history proton parameters have different
values. Because of it, we have focused on solving the
problems on the borderline between the zones in
the easiest way, 7. ., withour an increase in simula-
tion time or significant perturbations of the physical
process picture. In the SRNA codes, energy loss
AE,, on step As,, was multiplied by the factor L/As,
in order to obtain the deposited energy in the
current zone only if L < As,,. After that, the proton
starting point has moved to the zones borderline.
The deflection angle was sampled from appropriate,
previously prepared distribution (5).

Geometry

Transport simulation of particles is limited by
the geometrical description of the transport me-
dium. Real geometrical shapes of technical systems may
be described by planes and second order surfaces, as in
RFG [21] or PENGEOM and PENELOPE [15] pro-
grams, and fourth order surfaces in MCNP4B [13]. For
describing patient geometry, standard shapes are usually
applied. This is only a crude approximation, because it
is a technical description of a patient’s geometry. The
most accurate way of describing the patient's geometry
is by means of CT data [1, 16]. CT data permit 3D
transport simulation, including variations of tissue den-
sities and compositions. Using the same proton trans-
port model, we developed two versions of the SRNA
program. The first version of our code uses RFG or
PENGEOM programs as geometrical models. The
second, voxelized version, is adjusted to CT data. Only
in this version, the routine GEMVOX with heightened
calculation speed for estimating the distance from pro-
ton position within the voxel to its nearest plane has
been developed.

Conversion of Houndsfield's
numbers to density

The dimension and number of voxels along
with Houndsfield's numbers are the basis for the
preparation of simulation data. The main problems
due to the determination of density and elemental
composition of the patient’s tissue on the basis of
CT data are described [16]. In our model, in order
to spare computer memory, the intervals of
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Houndsfield's numbers are associated with elemen-
tal tissue composition and its densities,

By applying the DICOM standard, we are able
to distinguish Houndsfiedls’s numbers and to con-
vert them into an integer matrix MH (i, j, k), where
(i,j,k) represent the voxel index. Its contents, pre-
sented on the screen, enable us to select, in a natural
way, the types of tissucs that surround a tumor, as
well as Houndsfiels’s numbers that correspond to
them. In tissues selected in this manner, we join the
density and limits around the mean values of
Houndsfield’s number from its interval (Hy, Hy.p).
That approach was used in creating data shown in
Table 1. The preparation of CT parameters for better
simulation was reduced to the conversion of the
density of each voxel to matrix MG, (i, j, k) =
= 10000 p, [MH (i, j, k)] for every single tissue
(material) from 1 to N. For all other materials, we
prepared the transition probabilities and other con-
stants necessary for the simulation without repetition.
Every single material gets its own identification 10000
Py, by which we recognize the type of material being
in the voxel. Whenever, with the help of the anatomi-
cal picture, we found that we got a different
Houndsfields’s number for the same tissue, in such a
case, the tissue retained its natural elementary structure
and every tissue its own density. In such cases, our
program treated identical materials of different densi-
ties as different materials.

Table 1. Intervals of Houndsfield's numbers with
average densities and tissue composition according to
the available data prepared by Scheinder [16]: Mat -
tissue; H,g - Houndsfield's number, p - density [g/em?]

Mat | H, 2 H & N O P Ca
-950 | Air
741|026 | 103]105| 3.1 | 743 | 0.2
-98 | 093 | 11.6 63.71 02 | 198
-77 1095|114 | 59.8 | 0.7 | 27.8
-55 (097|11.2  51.7 | 1.3 | 355
098|115 644 | 07 | 231
=22 |1.00|11.0 529 2.1 {335 0.1
-1(102|106|332| 30 [528] 0.1
11]1.03| 105 414 | 3.4 [ 439 0.1
23| 163|106 18| 22 | 751 ] 6.1 0.5

Slelee ||| [w |~
©

11 420105104119 | 24 | 745 ] 0.1 0.7
12| 102|110 96| 99| 22 | 744 | 22

13 | 385|125| 7.8 |31.6| 3.7 438 40 | 85
14 | 466|130 73 /265| 3.6 [473 | 48 | 98
15 | 586|136| 69366 | 2.7 | 347 | 59 |12.8
16 | 657|141 | 64263 39 |436| 6.0 | 13.1
17 | 742|146 | 6.0|25.0| 39 | 435 | 66 | 143
18 | 843|152| 56235 | 40 | 434 | 7.2 | 156
19| 999|161 | 50212 40 [ 435 81 |17.6
20 11113| 168 | 46199 | 41 | 435 | 86 | 187

1500 1.75 | 42204 | 38 [415| 93 [ 202

b
—

Proton sources

In SRNA codes, proton sources are given in
the form of beams of circular and rectangular cross
sections. ‘| he beams can be rotated in 47 around the
irradiated object. For the purpose of accelerator
simulations, it is possible to obtain a phase space file
of particles on the reference surface. These files,
produced by the SRNA-2KG code, contain proton
energy, position and direction data in each line and
can be used as a proton source similar to the emis-
sion spectra of the well-known BEAM code [17].
Both versions of the SRNA code can use phase space
files as proton sources.

Scoring grid and simulation precision

In both versions of the SRNA code, a grid of
rectangular elemental volumes for energy deposi-
tion scoring (MeV /kg) was used. If CT data are used
for simulation, this grid is coincident with the grid
of CT voxels. On the other hand, the selfsame grid
is used fos precision determination of energy depo-
sition. The SRNA-2KG code calculates the preci-
sion of simulations for each material zone or appro-
priate separate part of the zone. The scoring grid
permits precision estimation of deposited energy x;
for each elemental volume or for a group of vol-
umes. During the simulation, values of Zx; and
Zx? arescored for each voxel or groups of elemental
volumes. At the end of the simulation, precision is
calculated by using these two obtained values.

NUMERICAL EXPERIMENTS

Due to limitations in cross section data for
nonelastic nuclear interactions and the availability
of simulation data obtained by other codes, numeri-
cal experiments were performed for water and tis-
sue. The results of these numerical experiments for
initial pruton energies of 26.4, 66, 100, 205, and
250 MeV are presented here with statistical errors
from 2 to 3%. Initial numerical experiments were
performed by utilizing the SRNA-2KG code in
order to verify the Multi-Layer Faraday Cup in the
proton beam. Expanded with the cross sections of
the positron emitters generation, that version ot the
code enables the estimation of the spatial distribu-
tion of positron emitters. The most interesting nu-
merical experiments with protons in voxelized ge-
ometry were performed using patient CT data.

Homogenous phantom

The results of the SRNA-2KG code for the
homogenous water phantom are compared with the
results of PETRA [18] and GEANT [20] codes.
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Comparison with LAHET and GEANT codes was
done for the homogenous tissue equivalent phan-
tom [19]. The model of PTRAN [8] code differs
from our model and PETRA models in treating
nonelastic nuclear interactions. When the transport
of secondary protons is excluded from the SRNA
code, the results of PETRA and PTRAN are coin-
cident [18, Fig. 28] with our results in those condi-
tions. The results in full are models shown in Fig. 4
for 26.4 MeV of proton energy and in Fig. 5 for 66
MeV of proton energy in a homogenous liquid
water phantom.

A realistic picture of deposited energy changes
along the depth and arrow of Bragg's peak requires
a low energy cut-off. Because of this, the cut-off
energy in SRNA codes is nominally set to 100 keV.
These results are shown in Figs. 5 and 6. The
maximum of Bragg's peak appears at a depth that
agrees with the theoretical proton range. It shows
that the model of proton passage is correct.
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Figure 7. Monte carlo simulation of depth dose
distribution in water for 250 MeV protons beam

Nonelastic nuclear interactions have little influence
on energies presented above, hence their effect is
not visible. As pointed out previously, these reac-
tions, although rare, have a significant influence on
the deposited energy distribution. Their increasing
influence can be seen in Figs. 6 and 7.

In these figures, the results for 100 and 250 MeV
proton beams in the water phantom for SRNA-2KG
and GEANT codes are presented. These results
illustrated the applicability of our code to higher
proton energies. It should be mentioned that vari-
ations of curves for shallower depths in Fig. 7 are
the results of compound nucleus decay. With in-
creasing depth, the said effect decreases, due to an
increase in ionization losses.

Voxelized geometry

In order to examine the proton transport
model, two experiments were performed with a 250
MeV proton in water. Depth dose distribution was
calculated with SRNA-2KG using a RFG geomet-
rical module and with the SRNA-VOX code in
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voxelized geometry. In both cases, transition prob-
abilities were prepared with the SRNADAT code.
The good agreement between both experiments
shows that the previously described algorithm of the
borderline between the zones is acceptable. These
results are the basis of an attempt to simulate proton
dose distribution in real patient geometry using CT
data with pixel dimensions equaling 0.081 x 0.81 cm?
and slice thickness of 0.5 cm. We assumed that a
tumor is situated in the eye base. In simulation, the
tumor was irradiated with a 65 MeV proton beam
with a circular cross section, whose radius is 1.2 cm.
The simulation was performed with 100 000 inci-
dent protons and tissue data for 21 "material” from
Table 1. The deposited energy distribution in pa-
tient slices, obtained by the SRNA-VOX code, is
presented in Fig. 8%.

Figure 8. Deposited energy in eye slices normalized
on maximum values in each slice, obtained by the
SRNA-VOX code in voxelized geometry on the basis
of CT data and tissue data from Table 1

* Interested readers can obtain more detailed, color pictures
from the author by E-mail.

110.0 v

Multi-Layer Faraday cup experiments

The quality and reproducibility of the pro-
ton beam for proton therapy is very important.
To obtain precise dosimetry, the beam must be
calibrated according to the predetermined initial
energy and acceptable energy spread. At the
Indiana University Cyclotron Facility, the Multi-
Layered Faraday Cup (MLFC) was used [22] to
characterize the proton beam of the accelerator.
Monte Carlo simulation, using SRIM, SRNA-
2KG and GEANT3 programs, provided data for
this project which were then compared with ac-
tual measurement data. Figure 9 shows simulated
and measured data for 205 MeV proton energy
with different spreads. The MLFC will resolve
adequate beam characteristics for proton therapy
and proper dosimetry. A simple test for the nu-
clear interaction model [23] can be checked by
the MLFC.

Positron emitter distribution simulation

During proton therapy, in nonelastic nuclear in-
teraction, positron emitters are created in tissue (for
instance 11C, 3N, 150). The verification of the therapy
can be achieved by comparing PET image discending
the positron activity distribution with the predicted
target dose distribution used to plan the treatment.
For such feasibility estimation purposes, at Brook-
haven National Laboratory, the SRNA-2KG pro-
gram was modified by the inclusion of positron emit-
ters cross sections, upon which their spatial
distribution within the tissue was simulated at 250
MeV proton beam with a 2 mm diameter [24].
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Figure 9. Number of protons stopped

15 18 21 24 27 30
Channel number

in Multi-Layered Faraday Cup: Monte Carlo simulation and measurcment in

TUCF and a 205 MeV proton beam. Channel number denotes the ordinal number of aluminum layer in MLFC
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CONCLUSION

A model of the Monte Carlo SRNA code and
representative numerical experiments were de-
scribed here. The results of numerical experiments,
in good agreement with the results of several well-
known codes, show the validity of the SRNA model
of proton transport simulation. In the energy range
of up to 26.4 MeV, the nonelastic nuclear interac-
tions can be neglected; up to 66 MeV, these reactions
should be taken into consideration for rigorous simu-
lation; above 66 MeV, the nonelastic nuclear interac-
tions must be included in the simulation. Numerical
experiments by the SRNA-2KG and GEANT codes
and measurements show that a MLFC is a very good
and simple tool for testing the nuclear interaction
model and that every Monte Carlo code used in
charged particle therapy should pass the MLFC test.
We believe that SRNA codes have successfully
passed this test and that these experiments are a
demonstration of the potential feasibility of our
codes in dosimetry and radiotherapy.
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Pagosan [I. WIIMR, Japxo JAJINER, Cpoomsyt J. CTAHKOBHER

CPHA - MOHTE KAPJO NMPOTPAM 3A CUMYJAIIMJY TPAHCIIOPTA
MPOTOHA Y KOMBUHOBAHOJ 1 BOKCEIN30BAHOJ TEOMETPUIA

Y papy cy ommcann HoBM Monte Kapno nporpaMu 3a cHMylNalMjy TpaHCIOpTa NPOTOHA Y
KOMIIZIEKCHHM IeoMeTpHjcKHM 00IHIIHMAa W MaTepUjanuMa pasnuunTor cactasa. IIporpam CPHA passujan
je 3a TpouMenHsHoHo (3D) pauyRame pacnofene fo3e y IPOTOHCKO] TepanHji i Jo3AMeTpHji. Mogen opux
MporpamMa 3acHUBA ce Ha TEOPHJH BHIIECTPYKOr pacejara W jeTHOCTaBHOM KOHUENTY pachiajia clokKeHor
jearpa. ITakeT unHe fBa nporpama: SRNA-2KG u SRNA-VOKS. ITlpen nporpaM cAMy/iIHpa TpaHCIOPT
IIPOTOHA Y KOMOHMHOBAHO] FeOMETPHjM K0ja Moxe GMTH onMcaHa paBHMMa M NOBPIIMHAMA JIpYror peja.
Ipyrn mporpaM KOPHCTH BOKCENHM30BaHY reOMETpPH]y MaTepHjanHWX 30HA W OH je moceOHO MOoJelicH 3a
TIpAMEeNy ToflaTaka KoMijyTepcke Tomorpadnje. BepoparHohe mpenasa 3a oba mporpama HpHIpeMa
mporpam SRNADAT. Mu oBfie npukasyjeMo MofieNie H anropuTMe HalllHX IporpaMa 3ajefiHO ca pesyira-
THMa HYMepPHYKHX eKCNepHMeHaTa HallliM NporpaMuMa M pesyiTaTe cUMyniallfje TpaHCIopTa MpoToHa
notujennx nomohy nporpama PETRA u GEANT. Cumynaiyja KapakTepH3amije MPOTOHCKOT CHOTA yTo-
Tpe6Gom BummecnojHor PapafiejeBor KaBesa | IPOCTOPHE paclofieliec eMHTepa MO3UTPoHa ToOHjeHe HAILIM
NpOrpaMoM HaroBelITaBa ckopy npuMery Monte Kapio TeXHHKa Y KIHHHYKO] IPAKCH.




