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Feynman-alpha and Rossi-alpha methods are used in traditional nuclear reactors to
determine the subcritical reactivity of a system. The methods are based on the
measurement of the mean value, variance and the covariance of detector counts for
different measurement times. Such methods attracted renewed attention recently with
the advent of the so-called accelerator driven reactors (ADS) proposed some time ago.
The ADS systems, intended to be used cither in energy generation or transuraninm
transmutation, will use a subcritical core with a strong spallation source. A spallation
source has statistical properties that are different from those traditionally used by
radioactive sources. In such reactors the monitoring of the subcritical reactivity is very
important, and a statistical method, such as the Feynman-alpha method, is capable of
resolving this problem.
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INTRODUCTION

Various reactions and transport processes of
neutrons in a nuclear reactor are random, so the
number of neutrons at any time is a random variable
[1-3]. Fluctuations in the number of neutrons in a
reactor can be divided into two categories: zero
reactor noise and power reactor noise. They are
predominant at different power levels and the rea-
sons for their occurences and utilization are differ-
ent. They are also described by different mathemati-
cal tools, namely master equations and the Langevin
equation, respectively [2, 4].

When a neutron is injected into the system
from an extraneous source, it randomly undergoes
anumber of nuclear events. A particular event might
be fission, scattering, capture or detection. The
number of neutrons per fission is a random variable.
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The time between nuclear events is also a random
variable. In reactor physics, these neutron fluctua-
tions caused by the above types of sources due to
inherent nuclear effects are called zero reactor noise.

In addition to zero noise, large power reactors
contain additional noise sources introduced by me-
chanical perturbations which can arise from tem-
perature and pressure variations, vibrations of con-
trol rods and core barrel, formation and transport
of steam bubbles in boiling water reactors (BWRs),
and so on. The neutron noise induced by such
perturbations is referred to as power reactor noise.
Power noise carries information about parametric
perturbation of the system. Changes in the noise can
indicate anomalous changes in the system state or
the appearance of new anomalies. That is why the
use of power reactor noise for diagnostic purposes
is also called neutron noise diagnostics or reactor
diagnostics.

Zero noise carries information about some
nuclear properties such as reactivity. During
1960ies methods as Feynman-alpha and Rossi-al-
pha were developed to determine the reactivity of a
subcritical system [1]. Such methods attracted re-
newed interest recently with the appearance of the
so-called accelerator driven systems (ADSs). These
systems, intended to be used either in energy gen-
eration or transuranium transmutation, plan to use
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a subcritical core with a strong spallation source. A
spallation source has statistical properties that are
different from those of the traditionally used radio-
active sources assumed in the derivation of the
previous Feynman alpha and Rossi-alpha formulae.
Therefore it was necessary to rederive both formu-
lae. This was actually done recently by several
authors [5-9]. However, they all assumed one aver-
age delayed neutron group at the most. Recently,
the extension of such formulae to a more general
case in which six groups of delayed neutron precur-
sors are taken into account, and full joint statistics
of the prompt and all delayed groups were included
in papers [10-12]. These papers contain the most
complete list of formulae with an explicit use of six
delayed neutron groups as well as full prompt-
prompt, prompt-delayed and delayed-delayed cor-
relations and the multiplicity of the source.

In a spallation source, which will be used in an
accelerator driven system, all neutrons arising from
the spallation reactions of one primary projectile,
usually a proton, are correlated, so the source sta-
tistics is not just Poisson, but composed of a Poisson
distribution of the emission event and a Gaussian
distribution of the source generating neutrons. Al-
though spallation neutrons arisen by one projectile
are born within a finite time span and not simulta-
m:ously, is time span is very short (a few nanosec-
onds) in comparison with the generation time of
fission neutrons in the fission chain, and it is even
shorter than the lifetime of the prompt neutron
chain. The arrival time of the projectile (¢. g. a
proton) is assumed to follow a compound Poisson
statistics. In other words, it means that there will be
a correlations between the generated neutrons, in
contrast to the traditional case, not only in the
fission chain but also in the external source.

TRADITIONAL FEYNMAN-ALPHA
AND ROSSI-ALPHA FORMULAE

Zero noise carries information about nuclear
properties of the system such as reactivity. There-
fore two fluctuation based methods, the Feynman-
-alpha or the variance-to-mean, and the Rossi-alpha
or the covariance method have been extensively
used to measure reactor subcritical reactivity [1-4].
They are both based on the measurement of the
second moment of the statistics of the detector
counts. In the Feynman method, one determines
the relative variance

oz (1)
i (1)

as a function of the measurement time f. Here, Z(¢)
is the detector count in (0, ¢), a random variable,

(Z(t)) is its expected value and o%(1) its variance.
By means of the theory of linear Markov processes,
the following expression was derived earlier for the
variance-to-mean (Feynman-alpha formula) [13]:
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In the above equation, ¢ is the detector effi-
ciency. The most important part of the sum is the
prompt part, #. £., i = 0, for which one has
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where B is the delayed neutron fraction, p the
subcritical reactivity, and A the prompt neutron
gcneranon time. The quantities v , {(v(v-1)), and

D, = (v(v—-1))/ ¥ are related to the various mo-
ments of the number distribution of the fission
neutrons [10]. For the sake of simplicity, the bar
from ¥ will be omitted in the following text. It is
necessary to note that eq. (2) is derived with the
assumption of a Poisson source, 1. e., the probability
of emitting one neutron in dt is S dt.

Physical interpretation of eq. (2) is as follows.
If all neutrons were statistically independent, as
e. g., those emitted by a radioactive source, the
statistics would be Poisson and relative variance
equal to unity. However, in a multiplying medium,
each neutron will induce a chain, leading to the
generation of a total on 1/(1 - k) neutrons in an
infinitive system. All neutrons in such a chain are
correlated due to the fact that they have a common
origin. Due to positive correlations, the variance
will be higher than Poisson. Since each individual
chain will die out in a subcritical reactor, the die out
being determined by the time constants a;, relative
variance will saturate. It is in this part of the vari-
ance-to-mean which exceeds unity where the useful
information on the system is found.

The Rossi-alpha method, based on the meas-
urement of the covariance function of the detector
counts in infinitesimal time intervals di around
times ¢ and ¢ + 1, is defined as

6
P(r)dr = Edr%Cie"“'{ (5)

The time constants q; are the same as in egs. (2)
d (3), and the constants C; similar to 4; in eq. (4).
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The interpretation of eq. (5) is also similar to that
of the Feynman-alpha. If all neutrons were inde-
pendent, the covariance would be zero, but it dies
out exponentially with the same time constants as
the ones that appear in the Feynman-alpha formula.
Again, the useful information on the system such as
its reactivity is contained in the exponents a;, mn
particular in ag.

GENERALIZATION OF THE
FEYNMAN-ALPHA AND
ROSSI-ALPHA FORMULAE

The Feynman-alpha and Rossi-alpha formulae
had to be generalized in order to be applied to the
spallation driven subcritical system because of the
different statistical properties of the external source.
This has been done recently by several authors [5-9].
However, in all these papers a single average delayed
neutron group was assumed (in some papers the
delayed neutrons were not even explicitly taken into
account). Paper [10] consists of the generalisation
of the method to the case when six different delayed
neutron group are distinguished.

The full joint statistics is explicitly expressed in
the following Feynman-alpha (6) and Rossi-alpha
(12) formulae
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Here, Z(t) is the expected value of the detector
counts in a stationary statistical system between time 0 and
t, 52, isitsvariance,and fizz (1) =G 5z(t) - Z(1) is the
modified variance.

Here, besides the standard notations, the fol-
lowing notations were used:
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The s, k = 0, 1, ..., 6, are the solutions of the
characteristic equation (the inhour equation):
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where

an-Bl 50 (11)

The Rossi-alpha formula is given in the fol-
lowing form:
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In the above, all notations are the same as with
the Feynman-alpha formula. The difference is that
the functions f;(f) are replaced by the functions g;(¢)
that are defined as

gi(t)=-5" =a,e™, i=01,..,6
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REACTIVITY DETERMINATION

IN A MULTIPLYING SYSTEM

WITH A STOCHASTICALLY PULSED
NEUTRON SOURCE

The Feynman-alpha (variance-to-mean) method
is used in traditional nuclear reactors to determine the
subcritical reactivity of a system. Steady-state neutron
flux is maintained in the reactor core during the meas-
urement by an external neutron source, usually a radio-
active source. It is a method that uses neutron fluctua-
tions and does not perturb the reactor. Cross sections,
detector efficiency and source strength need not be
known. From a plot of the variance-to-mean ratio as a
function of measurement time, the reactivity is deter-
mined by fitting the measured curve to the analytical
solution.

For a continuous source, without delayed neu-
trons, the variance-to-mean has a simple expression

cr%(t)= 1-e™ |
e 1+.9A|:1 = }1+Y(z) (13)

where

& — is detector efficiency, & = A4/

A4— is the probability of detection per neutron
and unit time, A4 = vEy,

v — is the constant neutron velocity,

T, — is the macroscopic cross section of detec-
tion,

A —is the probability of fission per time unit

per neutron, Ay= Vi and

%~ is the macroscopic cross section of fission.

The shape of the Y(t) graph depends on & and

a=-p/A (14)

where

p — is the reactivity, and

A — is the prompt generation time.

Detector efficiency ¢ and the constant A ap-
pear only as factors and do not affect the very shape
of the curve.

The concept of the so-called accelerator driven
subcritical reactors (ADS), proposed some time
ago, has received substantial interest recently. The
essence is a subcritical system driven by a very strong
external neutron source, based on an accelerator.
Such a reactor can transmute radioactive waste, and
also utilize fertile/fissionable material, mostly 232Th,
as fuel. In such reactors the monitoring of the
subcritical reactivity is very important, and a statis-
tical method, such as the Feynman-alpha method,
is capable to resolve this problem. However, it was
necessary to develop a new theory taking into ac-
count the statistical properties of the new source,
different from a traditional radioactive source.

In some recently started European Union pro-
jects, it is planned that, among other methods, the
Feynman-alpha method will be used for reactivity
monitoring. Therefore, in case of a pulsed accelera-
tor, the variance and mean values of detected neu-
trons have to be re-derived.

The Feynman-alpha method uses different
measurement times, so the measurement data, taken
during the long period continuously, need to be
devided into blocks. There are two ways of dividing
dara into blocks of different lenght. They are called
deterministic and stochastic pulsing. Deterministic
pulsing means that data blocks are taken so that the
beginning of a block always coincides with the start
of a pulse from the neutron generator. The second
way of dividing the data into blocks does not use
any synchronisation between the start of the meas-
urement time and the pulsing. There is a random-
ness in the measurement start. For calculation pur-
poses the randomness can be represented in the
source, so that there is a stochastic variable for the
first switching on of the source.

With a pulsed source the calculations for the
variance-to-mean have to be re-done. Therefore,
the pulsation of the neutron generator is modelling
with

S(0)=5 X [H(t-nTy)-H(e-W -nTy)]  (15)

where Ty is the pulse period, W the pulse width, §
the pulse amplitude and H denotes the unit step
function. The probability of emitting one source
neutron within (¢, ¢ + dt) is S(t) dt.

In this paper, we will concentrate on sto-
chastic pulsing, that is, on the case when there is
no synchronisation between the measurement
start and the incoming pulse, i. ¢., the start of the
measurement time is random. This is equivalent
to fixing the time axis at the measurement start
and to describe a source with a random function

[14]
S(.8)=5 T [H(t-nTy-&)-

~H(t-W-nT,-¢&)] (16)

where & is a random number, distributed uni-
formly in (0, Tp). Thus the source term will
correspond to a time dependent Poisson distribu-
tion whose parameter $(f) will contain a random
element. This is called stochastic pulsing or ran-
dom pulsing.
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Derivation of the modified variance of
detected neutrons in a multiplying system
with a stochastically pulsed Poisson source

To caleulate the modified variance of emitted
neutrons from a stochastically pulsed Poisson source,
we begin from the following balance equation:

P(n,tfte) =[1-S(to, )ty ]P(N, tltg +dto) +

+8(tg,&)dtg P(N -1, t|t0 +dty) (17)

The left hand side of the upper relation means
the probability of having N neutrons in the system
at time ¢, given that there were no neutrons at the
time #o. This probability is equal to the sum of the
probabilities for the two mutually exclusive events
at the right hand side:

(1) get no neutron during dfy and get N
neutrons from £y + dig to ¢, and

(2) get one neutron during dfy and get N - 1
neutrons from ty + dity to t.

With the initial condition
P(Nsto|fn)=5N,o (18)
from the balance eq. (17) we receive the following

equation

_4 P(N,t
dty

to) =

= =8(t5,E)P(N, t]tg) + S(to,5)P(N - L1lty)  (19)
For square pulses, starting from the upper
equation, the mean value of emitted neutrons is

equal to
SW
(N() =t (20)
Ty
Compared with the mean value for a continu-
ous source

(N(t))=5t (21)
the mean value for a stochastic source is scaled down
with the factor W/T,.

The modified variance defined as
sy = (N(N-1))-(NY’ (22)

is given by the following eq. [14]
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Ty 000
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For the Feynman-alpha formula in a multiply-
ing system one will need the asymptotic first and
second_moments of the source induced detector
count Z(1).

However, it is easy to show that, with the
source given by eq. (16), for any ¢

1% W
7o [S@.ds= == (24)
and that
(Z(t))= & ]’Z(t ~¢',T)dt’ (25)
Ty ¢

The calculation of the second moment
M5(1,T) is more complicated and will not be
proportional to that of the continuous source.

The modified variance is defined as

uz(t,T)= M5 (t,T)-Z° (26)
and will be

i
puz(tT) = | [K(,0)Z(, T)Z(t", Tyde'de" +
06

2

t 2 {
+ﬂsz(f'aT)d"[ﬂJ [J’Z(t',T)dt'} (27)
0

0 Ty 0
where

1%
K@= ({S(t',é)S(t",ﬁ)dff (28)

Calculation of the variance-to-mean of the
stochastically pulsed source

According to the standard definition of the vari-
ance, Var(N), variance-to-mean ratio, Var (N)/(N},
for neutrons emitted from the stochastically pulsed
source is equal to
Var(N) _ (N(N-1)+(N)~(N)* _

(N) (N)

(N)
Since it is only the part of the variance-to-mean
that exceeds that of a Poisson source that is inter-
esting, usually the modified variance is used instead

sy _ N(N-1)—(NY? (30)

(N) (N)
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The numerator in the upper relation is the
difference between (N (N —1)) and the squared first
moment (20).

The second moment, (N(N -1)), has been
calculated and the following formula for the modi-
fied variance-to-mean is received

By _ N(N-1)—(N)? _

(N (NY?

2 Y p 2
sw)” , “STO[,mﬂ](_er)
_[TOJ t +2n§1[ﬁ—“n4ﬂ4] sinp=) |sin g ;
. SW

o |
T,

It is interesting to note that the sum in eq. (31)
decreases as 1/n*. Therefore a good approximation for
the modified variance-to-mean can be achieved by
taking only the first three terms in the summation.

THE MODIFIED VARIANCE IN A
MULTIPLYING SYSTEM WITH A
STOCHASTICALLY PULSED
NEUTRON SOURCE

With the aid of the complex function theory
method and Laplace transform of a convolution, the
following solution for the first three terms of the
modified variance for the measurement time 7 was
received [14]:

- 2 @2t 2
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The first term of the upper equation and the
last one cancel each other and

- STy
#(T)=2 :
nuz( ) 'én‘i?rfl(“nzn_z +a211i2)

[ } nrcTJz( ) n:rWJ2+
sin T, sin T,

SW -
+Toﬂ,f(v(v—1))a—4(e T +aT -1) (33)

Dividing the upper relation with the mean
value, we get the modified variance-to-mean in the
following form:

uz(T) _ i 2o
(Z) b n47r4(4n27r2 +a2T02)

~1 2 2
SW A, ) [ mrT] ( er]
- e & — +
[ T, o 4 sin T, sin 7,

SwW .
+T—D/1f(v(v—1)>a—4(e““7 +

SW A J
mT—l)/(Tu Y (34)
which gives
uz(T) _ ldSTgsai 1 '
(Z) W o (4nfn? + n'a’ 1)

__msz2 ,er2+
sin ¥ sin T{,

A A -aT
d”f _1-e
+ = (v(v—l))[l - ] (35)

The upper relation represents the basic rela-
tion for the reactivity monitoring in a multiplying
system with a stochastically pulsed neutron
source.

RESULTS

The last term in the relation (35) has the same
dependence on T as the variance-to-mean for a
continuous source (2). In fact it is identical to the
Feynman-Y value for a continuous source.
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The modified variance-to-mean formula (35)
has a strong dependence on the pulsation period of
the neutron generator, Ty, in the first term. How-
ever, the second term has no dependence on T or
the pulse width, W. That means that the second term
is totally independent of the pulsation properties.

The function Y(T') = u5(T)/(Z) for the puls-
ing source is shown in Fig. 1 for one particular case.

Ifwe let the period time and the pulse width increase
by factor two, we will get the graph shown in Fig. 2.

The pulsation period and the pulse width are thus
important parameters for the experiment. If the oscilla-
tions in the variance-to mean are too big the method
may be less useful for the determination of reactivity.

If we keep the same period time and decrease
the pulse width then the amplitude on the oscilla-
tions will decrease. This is due to the last sine factor
in eq. (35). An example is shown in Fig. 3.

The lower envelope of the pulsed curve is
given by the traditional smooth Feynman-alpha
expression. To determine reactivity we can fit a
curve to the local minimum and read out the reac-
tivity parameter. It may also be possible to fita curve
to the complete experimental curve.

Y[m

0 0.001 0.002 0.003 0.
Tlsl]

Figure 1. Time dependence of the modified variance-
to-mean for a continuous (dashed) and a stochastic
pulsing source (Tp= 0.0004 s, W = 0.0002 s)

12
1.410

YTl

0.004 0.006 0.008
Tls}

Figure 2. Time dependence of the modified variance-
to-mean for a continuous (dashed) and a stochastic
pulsing source (Ty = 0.0008 s, W = 0.0004 s)

Figure 3. Time dependence of the modificd variance-
to-mean for a continuous (dashed) and a stochastic
pulsing source (T = 0.0008 s, W = 0.0001 s)

CONCLUSIONS

The Feynman-alpha method is successfully
used in traditional nuclear reactors to determine the
subcritical reactivity of a system. Measurement is
performed while a steady-state neutron flux is main-
tained in the reactor by an external neutron source,
as a rule a radioactive source.

A new situation arises in the planned accelera-
tor driven systems (ADSs). An ADS system will be
run in a subcritical mode. Steady flux will be main-
tained by an accelerator-based source with statistical
properties that are different from those of a steady
radioactive source.

In this paper, an analytical Feynman-alpha
formula for the case of stochastic pulsing is
presented and analysed. The obtained results
show that stochastic pulsing gives a variance-
to-mean curve that is smoothly regular with
a simple periodic oscillation. It consists of a
Feynman curve corresponding to a stationary
source, plus an infinite sum of periodic sine
functions squared. Thus the traditional
smooth Feynman-alpha expression is given as
the lower envelope of the pulsed curve. This
result is suitable for the determination of the
subcritical reactivity in the future ADS sys-
tems by fitting a curve to the local minima of
the variance-to-mean experimental curve, or
even to the complete curve.
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Jbumana KOCTHR

OJIPEBUBAIBE PEAKTUBHOCTH Y AKHEJIEPATOPOM MOBYHBUBAHUM
PEAKTOPUMA KOPUIIREHBLEM AHAJIM3E
PEAKTOPCKOI' IYMA

dejuman-anda u Pocu-ancga meTone KopuinfieHe ¢y y TpajHiIMOHAIHIM HYKICapHHM peakTo-
puMa 3a ofipebuBabe NOTKPHTHYHE PeaKTHBHOCTH cucTeMa. Metope ce 3aCHHUBajy Ha MEpElbY Cpellbhe
BpE/THOCTH BapHjaHce W KOBapHjaHCe OTKylaja AeTeKTOpa 3a pasiiiuTa BPeMEHa Mepeba. Hepasno, ca
nojaBoM Hjieje O T3B. aKIeNepaTopoM noGybuBankM peakTopuMa, 0BHOBJBEH j& HHTEPEC 3a OBHM MeTOlaMa.
OBH peaKTOPH, HAMEHLCHH JIa ce KOPHCTE 3a TPOH3BOJIkY CHepruje Win TpaHCMYTAllHjy PaiHoaKTHBHOT
oTnaja ynoTpe6baBahe jake cranalioHe W3BOPE “Hja ce CTATHCTHYIKA CBOjCTBa Pa3iIHKYjy Ofi CBOjcTaBa
TpamuIHOHaNHO KopuimheHnX pajiioaKTHBHUX M3BOpa. Y TAaKBHM peakTOpHMa npaherme MOTKPHTHYHE
PeakTHBHOCTH je BEOMa BaXKHO W CTAaTHCTHYKAa METO[a Kao ®dejuman-anda je cnocoGHa a penld Taj

npobneM.



