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The objective of this paper is to introduce a new direct method for neutronic calcula-
tions. This method, called direct discrete method, is simpler than the application of the
neutron transport equation and more compatible with the physical meanings of the
problem. The method, based on the physics of the problem, initially runs through
meshing of the desired geometry. Next, the balance equation for each mesh interval is
written. Considering the connection between the mesh intervals, the final discrete
equation series are directly obtained without the need to pass through the set up of the
neutron transport differential equation first. In this paper, one and multigroup
neutron transport discrete equation has been produced for a cylindrical shape fuel ele-
ment with and without the associated clad and the coolant regions, each with two dif-
ferent external boundary conditions. The validity of the results from this new method
is tested against the results obtained by the MCNP-4B and the ANISN codes.
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INTRODUCTION

A control volume is usually chosen for solving
the physical problems on hand, and the production,
absorption, input and output terms are written for
it. Then, if the control volume approaches zero, the
relevant differential equation can be derived. This
equation — with its initial and boundary conditions
— express the mentioned physical phenomena in
mathematical formulation. The derived differential
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equation is not usually easy to solve except for
simple and symmetrical geometries. Therefore, nu-
merical methods are to be used. In this regard, the
continuous parameters must be converted to dis-
crete parameters to produce algebraic equation se-
ries [1].

The main goal in neutronic field is calculation
of neutron population distribution (neutron flux
distribution) in a reactor core. The balance equation
for the neutron population distribution inside a re-
actor core 1s:

on_p_g (1)

ot
where: n is the neutron population in time ¢;
0 n/ Jt— change in neutron population versus time,
P — neutron production, and L — neutron loss.

Neutron population in this equation de-
pends on the following seven factors (x, y, z, E,
Q,, Q,,t). Neutron production consists of fission
neutrons, extraneous sources and scattering
from other energy and angle intervals to a de-
fined energy and angle intervals. Neutron loss
also includes absorption, leakage from reactor
core and scattering to other energy and angle in-
tervals.Further mathematical calculations lead to
the following integro-differential neutron trans-
port equation [2]:
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It is apparent that the above equation is not
easy to solve even for simple and symmetrical geom-
etries. This equation is usually reduced to a simple
one using different numerical methods. Few of the
approximate methods devised to make this equation
more amenable to acceptable solutions are as fol-
lows [3]: (a) collision probability (Pij), (b) discrete
Sy method, and (c) P, approximation and diffusion
equation.

Other probabilistic methods such as Monte
Carlo and nodal methods have also been presented
for neutron flux distribution calculations. While
each of these methods has its own merits, they are
not free of shortcomings. When applying each of
the above methods to solve the neutron transport
equation, mathematical tools are given so much
concern that the physics of the problem is usually
lost in between. Also, sometimes, new mathemati-
cal parameters (such as diffusion coefficient and
diftfusion length in production of diffusion equa-
tion) that have no specific physical meanings are de-
fined and are solely artificial mathematical parame-
ters. In the next section, some of the shortcomings
of differential formulation are listed.

RESTRICTIONS IN APPLYING
DIFFERENTIAL FORMULATION

Some intricacies in applying differential for-
mulation have already been stated. Here, some
more restrictions in applying this formulation are
listed.

(1) Physical variables can be classified into two
main categories: global quantities and field func-
tions.

Global quantities are directly measurable in
the laboratory; therefore, they must be physical and
realizable parameters such as mass, internal energy
and neutron population.

The corresponding field functions are derived
from these global variables by a limiting process and

are called mass density, eneryy density and neutron pop-
ulation density.

Difterential formulation of physical laws re-
quires the conversion of global variables into field
functions by the limiting process applied to the line,
surface and volume to get densities and to the time
interval to get rates.

(2) The analytical solutions of differential
equations are normally possible for smooth bound-
aries. This condition is not commonly met in prac-
tice. Therefore, numerical treatment is usually used.

(3) Usually sources are concentrated in small
regions like the heat spot of a laser beam or a point
neutron source. The differential formulation leads
to considering pointwise concentrated sources,
which are unphysical, instead of sources with given
intensity concentrated in a small but finite area. In
order to overcome this problem, the Dirac general-
ized function is introduced.

(4) In addition to few of the mentioned short-
comings attributable to differential formulation,
there is one other major drawback and that is its sel-
dom adaptability to analytical solutions. As a result,
one should resort to numerical methods, such as the
finite difference method, the finite element method,
the weighted residual method, the least square
method [4], etc., in order to be able to discretize the
differential equations and thus produce a finite set of
algebraic equations.

With these introductory remarks we are now
in a position to pose the following questions:

— Why use the differential formulation against
all these restrictions and complications?

— Is the differential formulation the only way
to formulate a physical phenomenon?

— Is it possible to directly obtain a discrete
form of physical laws without a compulsory passage
into the differential formulation?

The answers to all these questions — with the
notable advance in speed of calculations and the vol-
ume of the memory of today’s computers — may be
given by introducing the new direct discrete method
(DDAM ). This method is much simpler and more
compatible with the meanings of the physical laws
when compared with the customary and widespread
differential formulation method. This method has
been successfully applied to newtonian mechanic
[5], electrostatic, electrodynamics [6], heat transfer
[1], and fluid mechanics. The method is further de-
veloped to adapt it to the general neutronic calcula-
tions.

GENERAL REMARKS ON
DDM FORMULATION

The question here is how to produce discrete
tormulations for a physical problem. Three major
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steps are envisioned to transform the physical prob-
lem into the DDM model:

(1) Identification of the global variables of
the specific problem on hand: as mentioned be-
tore, physical variables are classified into two cat-
egories. Differential formulation uses field func-
tions, which are spurious and unphysical
parameters. DDM uses global variables, which
are real and physical parameters. The global vari-
ables should be identified for the defined physical
tield first. Neutvon population is a global variable
in a neutronic field.

(2) Adoption of a suitable meshing scheme for
the specified geometry: coordinate systems are the
essential tools to derive and solve the differential
equations. In differential formulation, a coordinate
system is usually chosen and then the integrals and
derivatives are discretized with notice to the chosen
coordinate system. As a result, the differential equa-
tions change to a set of algebraic equations. Simi-
larly, in the DDM method, a suitable meshing
scheme should be adopted such as triangular, rect-
angular, cylindrical or spherical mesh depending on
the given geometry and its dimensions. For in-
stance, in pin-cell calculations, it is better to use cy-
lindrical meshing scheme considering the fact that
fuel elements are usually cylindrical in shape.

(3) Formulation of the balance equation for
cach mesh interval: the balance equation should
be written for each of the generated mesh inter-
vals considering the physics of the problem. It
should be mentioned that due to dependence of
each mesh interval equation on its neighboring
mesh interval equations, the set of the generated
DDM equations must therefore be solved simul-
taneously.

Finally, it is important to note that the DDM
tormulation can transform into the differential for-
mulation using the limiting process. Figure 1 shows
the main differences between these two distinct ap-
proaches or methods.

APPLICATION OF DDM TO
NEUTRONIC FIELDS

As previously mentioned, to apply DDM to a
physical problem, first the physics and the geometry
of the problem have to be completely known and its
global variables identified. Therefore, neutron pop-
ulation N is defined as a global variable in a
neutronic field. As an example, let us consider a cy-
lindrical fuel element with volume V and surface S.
Next, assume a time interval ¢ selected under some
special conditions. The neutron balance equation
can now be written for the existing neutrons in this
position-time element based on the events which

discrete sett
Physical | ____ : g always |
problem algebraic equations

Finite elements
—| Special methods
Galerkin '—
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—| Subdomains

Least squares
et
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| discrete setting ‘
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Figure 1. (a) Traditional approximate methods are
based on discretization of differential equations;

(b) the direct discrete method (DDM) permits to di-
rectly obtain the discrete form of physical equations
from physical facts

might happen to these neutrons inside the fuel ele-
ment.

The following essential assumptions have
been made in deriving the neutron discrete equa-
tions:

(1) One-group energys;

(2) Uniform distribution of the materials oc-
cupying the regions of the various mesh intervals of
the volume element — the dimensions of the mesh
intervals are normally so small that make this as-
sumption acceptable;

(3) Uniform distribution of neutron popula-
tion in each mesh interval;

(4) The rates of the entering and the exiting
neutrons across the various surfaces of the mesh in-
tervals are assumed to be constant;

(5) Limit the time interval ¢ so as to allow only
one neutron interaction;

(6) Neutron-neutron collision is neglected;

(7) The static-state case is considered.

Finally, let us write down the general balance
equation independent of the shape, dimension, and
the material make up of the element under study:

PWV,t) —A(WV,t) + I(S,t) — O(S,t) = 0 (3)
We have in the above equation: P —neutron produc-

tion, A —neutron absorption, / —neutron input, O —
neutron output, ' — the volume of the element, § —
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the peripheral surface of the element, and ¢ —the ob-
servation time interval.

Each of the terms identified above will later be
explicitly construed, using the neutronic global
variable (N).

PRODUCTION OF NEUTRON
BALANCE EQUATION
(USING PROBABILITIES)

In this section, we will adapt the above balance
equation to neutronic calculation. To start out, we
shall divide the neutron population into two sepa-
rate entities. The primary (alveady available) neu-
trons within the different mesh regions and the sec-
ondary (entrant) neutrons that enter into different
meshes through their corresponding surfaces. It
will be seen later, that there are in fact no substantial
differences between these two groups of neutrons
and that this division simply comes to be handy
when deriving the discrete equations.

Primary neutrons

A cylindrical shape fuel element is assumed
with a population of neutrons already inside it. Next
we will investigate the fate of these neutrons during
the observation time interval £. Also we assume that
no neutrons enter the volume through the bound-
aries at this stage. These neutrons may participate in
the following reactions:

(1) Neutrons may participate in absorption

reaction:
- absorbed neutrons may cause fission,
- neutrons produced from fission may escape from

the volume element,
- neutrons produced from fission may remain in

the volume element, and
- absorbed neutrons may just be captured;

(2) Neutrons may participate in scattering re-

action:
- neutrons after scattering may escape from the

volume element, and
- neutrons after scattering may remain inside the

volume element;

(3) Neutrons may remain in the volume ele-
ment without any reaction;

(4) Neutrons may escape from the volume ele-
ment without any reaction.

“Escape after scattering” and “escape without
any reaction” are not differentiated, because in ei-
ther case a neutron is lost from the mentioned vol-
ume element. On the other hand, neutrons set out
to move in a certain direction with a finite speed and
experiencing no interactions do not necessarily all
get the chance to leave the volume element in the fi-
nite observation time interval ¢. Only neutrons,
which are close to the boundary of the element, can

Figure 2. Cylindrical element and
its boundary layer

escape from the volume element. If the speed of
neutrons is assigned to be v and the time interval as
already introduced is assumed to be ¢, then the fur-
thest distance that a wandering neutron can travel
is:

d=vt (4)

The region realized by this distance which is
adjacent to the surface of every mesh interval, is
named the boundary layer thickness, fig. 2. It is ob-
vious that neutrons lying within this boundary layer
have the chance of escaping the region. Considering
the definition of this boundary layer, the primary
neutrons may be categorized into two different
groups:

(1) Neutrons in the internal zone with an es-
cape probability equal zero;

(2) Neutrons in the boundary layer that have
the chance of escaping the region.

Since the neutron population distribution in
each mesh interval has already been assumed as uni-
form, hence the ratio of neutrons in each of the
above mentioned two regions to the total number
of neutrons equals the ratio of the volume of the re-
spective regions to the total volume of the volume
element. Two new parameters, a (neutrons’ internal
zone fraction) and b (neutrons’ boundary layer frac-
tion) are defined as:

pNo Vs _lmr® —n(r—d)*Jh _
N 7V mrlh
_—d’+2dr _2d :
rz - r ( )
N N2
N Vi _nr-dPh (=)
N 7V nth 2
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where: Nj is the number of neutrons in the bound-
ary layer, V}, — volume of the boundary layer, N; -
number of neutrons in internal zone, V; — volume of
internal zone, N — number of the total neutrons in
the volume element, and /- total volume of the vol-
ume element.

However, d? is neglected against 2rd in the
above equation. Consequently, the number of neu-
trons in the internal zone will be equal to aN and the
number of neutrons in the boundary layer will be
bN.

Neutrons in internal zone (2N)

The escape probability for this group of neu-
trons is zero and the reactions that they may un-
dergo are the following:

— probability of neutrons not absorbed in the time
interval :

exp(_Za vt )

- probability of neutron absorption in the time in-
terval £:

I—exp(—>, vt)
— probability of fission (if they are absorbed):

2y
Xa
— probability of capture (if they are absorbed):

.
2
Neutrons in boundary layer (4N)

The escape probability for this group of
neutrons is not zero. These neutrons, on the av-
erage, have less time available to them, compared
to the other group of neutrons, to participate in
different reactions. It is probable for these neu-
trons to escape from the boundary layer while in
their random movement. The average time pe-
riod available to the boundary layer neutrons is
considered as ¥, which will be discussed in more
detail in the next section. For this group of neu-
trons, the following results are obtained:

(1) Probability of neutrons not absorbed in
the observation time interval £*:

exp(—X, vi¥)

- escape probability from the boundary layer (if
they are not absorbed): P;
- residence probability in the boundary layer (if
they are not absorbed): 1 - P;
(2) Absorption probability in the observation
time interval £*:

1—exp(=, vt*)
- fission probability (if they are absorbed):

2
2,

— escape probability for neutrons produced from
fission: P,

- residence probability in the element for neutrons
produced from fission: 1-P;

— capture probability (if they are absorbed):

2,
X
By lumping all of the above and the previous
terms together, the following explicit results for the
production, absorption and the output sentences of the
primary neutrons are obtained:

p(V,t)=N{a[l-exp(—2,vt)] +

+ b[l—exp(—2, vit¥)] };Zf (7)

AWV, t)=N{a[l—-exp(—2,vt)] +

+ B[ 1—exp(— X, vi*)]} (8)

o(S,t)= NPb{[l —exp(—2, vt*)]UZZf +

a

+exp (-2, vt*)} (9)

Calculation of the neutron
escape probability (P)

Here, isotropic scattering and a uniform distribu-
tion of neutron populations are assumed. Admittedly;
by accepting these assumptions, the accuracy of the
model is somewhat reduced. With these remarks in

Figure 3. Escape probability calculation for
boundary layer neutrons
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mind, one can imagine that the population of neutrons
in the mesh volume is located at half distance from the
surface of the mesh interval. If it is taken that the maxi-
mum distance that the neutrons can travel until they es-
cape from the region is 4 (4 being the radius of a sphere
centered at the point where the escape calculation is to
be made, refer to fig. 3 for further clarification), then
the escape probability is calculated to be:

60
2m [ sin6 do |

p=—0 =" (10)
4 4

Calculation of the time interval (¢*) for the
boundary layer neutrons

Since the average time period available to the
boundary layer neutrons which do not escape the
volume element is #, and the average time period
available to the boundary layer neutrons which es-
cape the volume element is #/2, then one can easily
calculate the average time available to the entire
population in that layer using the above obtained
result for the escape probability as follows:

p=dly 3,7 (11)
42 4 8

Considering the above result, we can without
any severe approximation and for simplicity assume
t* as equal to ¢.

The secondary (entrant) neutrons

While this group of neutrons and the primary
neutrons hold a lot of similarities, they, however,
differ in two distinct aspects:

(1) The primary neutrons have a spatial angle
distribution between 0 and 4n steradian, whereas
the entering neutrons have a direction towards the
volume element; therefore a spatial angle distribu-
tion between 0 and 27 steradian;

(2) The average time period available to these
neutrons to participate in any reaction within the
boundary layer equals half of the average time pe-
riod available to primary neutrons.

Let us identify the entering neutrons into the
volume element by the parameter I. Using this pa-
rameter one can now write down the relevant pro-
duction, absorption and the output terms arising
tfrom this group of neutrons as follows:

R(VJ):1P—eq{—zav;)}i§b' (12)

Aiact)=1{1—exp[—§; v;j} (13)

Neutron escape without

Neutron input | — any reaction

D
dr2

Figure 4. Escape probability of neutrons without any
reactions

where the index 7 corresponds to the above defined

parameter [.

Now, for the calculation of the output term O;,
two groups of neutrons should be considered:

(1) The input neutrons which do not partici-
pate in any reaction after entering the volume ele-
ment. This group of neutrons can travel the maxi-
mum distance d and then escape the volume
element (fig. 4). Therefore, a fraction of neutrons
that enter from the top of the line d and do not par-
ticipate in any reaction can escape from the element.
C, is defined as the fraction of neutrons that have
this condition (entering from the top of the line d)
as follows:

D
¢ = (14)

Since [ is the input neutrons into the mesh re-
gion, then IC) is the total number of neutrons en-
tering the boundary layer. In this regard, N, (neu-
trons which enter the boundary layer in one specific
dimension) is defined as:

N, =L 1c, (15)
4m

The number of neutrons entering the bound-
ary layer, defined by the differential element dy, and
escaping the region without any reaction is:

N L exp(-25,2) (16)

Furthermore, the total output sentence for
this group of neutrons is:

dy
Oa Z_[Nl Bexp(—ZZ,Z) (17)
From fig. 4, we have:
V2 +Z? =R*=2ydy = -2ZdZ  (18)
hence, the above integral can be changed into:

d/2

1 dz
O, =—— |exp(-2>, Z
il 4nR IO p( Zt )

VA
NR?-7?

(19)
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Since the derived integral cannot be solved an-
alytically, it should therefore be solved numerically.
The following assumptions are considered for solv-
ing the integral:

— speed of neutrons v = 107 m/s,

— observation time interval £ = 1071# s,

—boundary layer thicknessd = v- t= 1077 m,

— radius of the fuel element = 0.5 cm, and

— total macroscopic cross section £, = 1500 cm™.

With the above assumptions, the derived integral
is equal to:

0, =01979-1071 (20)

(2) The entrant neutrons, which participate in
scattering reaction after entering the volume ele-
ment and then escape from it. This group of neu-
trons should first have enough time to participate in
a scattering reaction and then a fraction of them
may escape from the volume element. Assume a
neutron has traveled a distance x to participate in a
scattering reaction and then travels the distance y,
and subsequently escapes the region (fig. 5). It is
clear that the sum of the distances x and y should sat-
isfy the following condition:

<_ Neutron escape after
scattering

Neutron input

Figure 5. Escape probability of neutrons after scatter-
ing reaction

x+y<d (21)

If the output term for this category of neutrons is
shown by O,,, then by hindsight and intuition one can
conclude that Oj,, is much smaller than O;;.

Here, one notes that the contribution of this
group of neutrons to the output terms is very small. It
is, therefore, to be deduced that this group of neutrons
has only the opportunity to enter the element in the ob-
servation time interval # and that their later escape can
be ignored. However, the final equation can be written
as:

P+P,—(A+4;,)-(0+0; +0,)+1=0 (22)

Simplification of the derived equation

As noted before, the boundary layer thickness
is about 10”7 m. Therefore, the derived exponential
sentences can be approximated using the Taylor ex-
pansion as follows:

exp(—2,vt)=1-2,vt (23)

Utilizing this approximation and applying it
to the previously derived expressions we get:

P,, =P+P, =vvY. f(N +1j (24)
2
Ay =A+ A4, =vt2a(N+;j (25)

Ororat =0+ 0y +0;, = NPb(0X vi+1-2,vt) +

+0.1979-10 %1+ 0;, (26)

and, the final equation may be written as:

N|:UZf —Za _Pb(UZf —Za +1j:| +

vt

H{sz ~2 _(0.1979-10-13 +0in 1

+— =027
2 vt vt vt} 027)

In the above equation, v and Z, can be ig-
nored against the 1/vf term in the first parenthesis
and likewise all of the terms in the second bracket
against 1/vt term. With these approximations im-
plemented, the final equation becomes:

N(UZ,- -y, —Pb1]+ll -0 (28
’ vt vt
Consequently, the approximated and the sim-
plified expressions for the production, absorption,
input and output terms become:

P=NoX vt (29)
A=NY, vt (30)
O =NPb (31)
I=1 (32)

By recalling the expressions obtained for b
and P and substituting them in Pb/vt we get:

1
Phoar_1 (33)
vt vt 2R

It is interesting to note that the dimension of
the above term is the inverse of the unit of length
and shall henceforth be defined as leakage cross sec-
tion (Xy). With this new nomenclature, the final
equation becomes:

NEZ T, T )R =0 (34)
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There are few important observations worth
noting in relation to the coefficient b. The first ob-
servation is that this coefficient is sensitive to the
type of external boundary conditions applied, 7. ¢. it
depends on whether the net current equal to zero is
used or the incoming current equal to zero is put.
The other important point is that the DDM equa-
tions in static-state form for other geometries such
as slab, sphere, square, triangular [7] are exactly
identical except for their differences in the coeffi-
cient b, indicating its dependence on the geometry
of the volume element.

Some notes on the input term (I)

As seen in fig. 6, the input from mesh volume
i+1 to mesh volume i is the same as the output from
mesh i+1 tomeshi. Asaresult, by using the output
term which was calculated earlier, we get the follow-
ing results:

1ii1,=0u1,i =Ny 2y vt (35)

It is also known that 3 ,,, ; is defined as:

1 2R,
_Pby _ 4R —R) _
zL i+l,i - -
vt vt
2R*i1 —R?)) (36)

where, &;,; is the inner boundary layer fraction of
the mesh interval i+1.

iy
< i

Figure 6. Input sentence calculation

Similarly, the input from mesh volume i — 1 to
mesh volume i, as illustrated in fig. 6, is the same as
the output from mesh i — 1 to mesh i. In likewise
manner as before, we get:

Iiy =0,y ;=N 2Zp vt (37)

i—1,i

It is also known that 3/ ;_; ; is defined as:

1 2dR,,
_Pb!, _4(R*1-R*2) _
zLi—l,i - - -
vt vt
Ry (38)

2R*i-1 —R%i-2)
where 4!, is the outer boundary layer fraction of the
mesh interval i — 1.

It is to be noted that the production, absorp-
tion, input and output terms are all stated in terms
of the neutronic global variable N. Deriving the dis-
crete equations for each of the mesh intervals and
linking them together give rise to series of algebraic
equations, which will have to be solved simulta-
neously. The derived matrix equation is AN = 0,
where A is a N x N coefficient matrix. N is the un-
known n x 1 matrix. Neutron population distribu-
tion and the eigenvalue and the corresponding mul-
tiplication factor k can all be obtained by solving the
matrix equation.

IMPROVING THE DDM METHOD
TO MULTIGROUP ENERGY

A cylindrical fuel element with volume V and
surface Sis assumed as a position element and a time
interval t is selected, same as in one-group investiga-
tions. It is allowed that the neutron population de-
pends on energy, but rather than treat the neutron
energy variable E as a continuous variable, we will
immediately discretize it into energy intervals or
groups. The neutron energy range may be broken
into G energy groups, as shown schematically in fig.
7. Notice that a backward indexing scheme was
used for energy intervals. Due to this fact, that neu-
tron usually loses energy during its lifetime; neu-
tron up-scattering will be ignored in the process of
neutron multigroup discrete equation production.

Neutrons in mesh interval i and energy group
g are assumed and the ways of production and loss
of them will be investigated.

L] L] | .
BN T N '

5 Ey FgEge By Eq

Figure 7. Energy discretizing

Production ways

I. Production from fission reaction may be

shown as:
Xig (UigNigVig Zfig )+

G
tXig ng VigNigVigr Z:fig' (39)
g'=1
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N, . is neutron population in mesh interval i with
energy group g', and Vg is the speed of neutrons in
mesh interval i and energy group g'. The other pa-
rameters have the usual meaning in reactor physics.
II. Production of neutrons in mesh interval i
and energy group g, due to the scattering of neu-
trons in other energy groups in the same mesh inter-

val:
g-1
'Z:l Nig’Vig’ zS ig'—>g <4O)
g'=

2 ig'>g Is neutron scattering cross section from en-
ergy group g' to g for mesh interval i.

III. Production due to the escape of the neu-
trons in energy group g from mesh interval i+1 and
i—1 to the desired mesh interval i:

NiigViig Xri1it

+Ni+1,gVi+1,g ZL i+1,i (41)

It should be mentioned that leakage macro-
scopic cross section does not depend on the neutron
energy and can be stated by the one-group energy
theory as:

R,
2 H,izzilz
2RZ, ~R%,)
and
R.
2Ll i= 42
AR, ~R}) *2)
Loss ways

I. Loss due to absorption reaction may be
shown as:
NigVig Za ig (43>
II. Neutrons in mesh interval i and energy
group g can escape to the other mesh intervals by the
below rate:

Nig Vzg Z:Li (44)

Leakage macroscopic cross section 2;; from
the mesh interval i can be stated by the one-group
energy theory as:

_ 1
2R —R;y)
III. Neutrons in mesh interval i and energy
group g, can participate in the scattering reaction

and therefore exit from the energy group g by the
below rate:

2 (45)

g'#g

2 Niglig Ysigog =NigVig X Xsigoe (46)
g'#g
g>g g>g

Z 25, ig ' may be shown by X ;,and named total
=, . o
scattering cross section for neutrons in mesh interval i
and energy group g that transfers the neutrons from
energy group g to the other energy groups. Therefore,
the final neutron discrete equation in multigroup en-
ergy for mesh interval i and energy group g, for a cylin-

drical geometry becomes:

_Ni—l,gVi—l,g ZL i-1,i +Vi,gNi,g (Za i,g+ ZS i,g+ ZLi )_

_Ni+1,gVi+1,g ZLi+1,i - Z ZSi,g'—>g Ni,g'Vi,g' =
g8<g

Il
RN
)
—
irMe

Vg NigVig rig)
gl ighig ~fig (47)

where k is the multiplication factor of the desired
medium. The derived discrete equation can be writ-
ten as a matrix form AN =(1/k) BN where A and B
are [(n x g) x (n x g)] coefticient matrices. N is the
unknown [(n x g) x 1] matrix.

RESULTS AND DISCUSSION

To evaluate the DDM method in one-group en-
ergy, two typical problems have been solved using the fol-
lowing data (see tab. 1). First, a fuel element made up of

Table 1. Data used in the one-group energy test
examples 7

1 1

Elements v Zqg cm” Srem! | % em”
U-235 25 33+1° 2.8+1 4.81-1
Zr 0.00 7.7-3 0.00 3.03-1
H>O 0.00 2.26-2 0.00 2.069

* read as 3.3-10

uranium-235 with 1 em radius is considered. Next, a fuel
clement with the associated clad and coolant regions is
considered. The clad and the coolant thicknesses are taken
as 0.1 cm and 0.3 cm, respectively The type of material as-
sumed for the clad 1s Zir and that of the coolant is H,O.
These examples are solved for two widsespread external
boundary conditions, namely / = 0 and J,,, = 0. The
same problems have also been solved with the MCNP-4B
[9]and the ANISN codes [10]. Figures 8,9, and 10 show
the results for comparison.

To evaluate the validity of the DDM method in
multigroup energy, two criticality search problems have
been solved in two-group energy. NJOY-97 [11] has been
applied to extract required data from ENDE/B-VI[12]in
two-group energy. The generated data for required ele-
ments are presented in tabs. 2 and 3. Using the produced
two-group energy libraries, first a fuel element made up
of uranium-235 with 4.8 cm radius (critical radius) is
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Table 2. The fast data used in two-group energy test ment which is surrounded by 6.25 cm coolant, changes
problems to 3.75 cm, for the external boundary condition, /= 0.
Be. | Zo on 51 11 G100 The same problems have also been solved with ANISN
mENS | 1028 2| 10 me | 10me | A0 | 102 me © code. Figures 11 and 12 show the results for comparison.
U-235| 1.1865 1.1845 6.386 6.460 1.2-9 2.85 It Sh0u1~d be noticed that the neutron. fluxes
H-l | 3635 | 0000 | 2534 | 2534 | 136 1000 were normalized between 0 and 1. In reality, the
0-16 | 4.00-2 | 00.00 | 2245 | 2245 | 13-15 | 0.00 thermal flux is of the order 101* in comparison to

the order 1 of fast flux.
Table 3. The thermal data used in two-group energy test

problems
e | T o o _ - CONCLUSION
ments 111?2’2" 1028 m? | 1028m? | 1028 m? | 1028 m? v
U-235| 119.19 | 102.68 | 14.287 | 14.287 | 00.00 | 2.41 The DDM method is very simple tosetup and
H-1 | 7962 | 00.00 | 21.236 | 21.236 | 00.00 |00.00 it obviates the need to go through the difterential
O16| 4575 | 0000 | 3898 | 3.898 | 00.00 |00.00 formulation process first. DDM starts from the ba-

sic and fundamental meanings of neutron physics,
considered. Next, a fuel element with the associated cool- then passes to the desired meshing scheme of the ge-
ant region is considered. The critical radius of the fuel ele- ometry on hand, and, by writing the balance equa-
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ico, Code System for Producing Pointwise and

Hacep BOCYI'U, Ann Ar6ap CAJIEXU, Mayupn ITAXPUAPU, Eano TOHTH

JUPEKTHA IUCKPETHA METOJA N IbEHA IIPUMEHA
Y TPAHCIIOPTY HEYTPOHA

Y papy je mpuka3aHa jeflHa HOBa METOJla 32 HEyTPOHCKe npopauyHe. OBaj mocTynak, Ha3BaH
AUPEKTHA JUCKPETHa METO/a, jeAHOCTaBHUjU je Ofi yoOuuajeHe NpHMEHE HEYTPOHCKE TPaHCIOpPTHE
jemnaumHe, n y Behoj je carnacHocTy ca (pU3MYKUM 3HAUEHUMa 3ajjaTka. MeTofa nosasu o opMupama
Mpexke pa3MaTpaHe reoMeTpuje 3acCHOBaHe Ha (pu3uiy mpobiema 1 o0pa3oBamy jefHaunHa O6ajaHca 3a
cBaKM MHTepBal Mpexe. IloBesyjyhu MpexkHe MHTepBale, KOHA4aH CHCTEM AMCKPETHUX jeHAauYnHa
HenocpegHo ce fobuja 6e3 norpebde fAa ce IPETXOAHO YCIOCTaBU AuepeHIIjalHa TPAaHCIOPTHA jeJHAUNHA
HEYTpOHA. Y pajy cy oOpa3oBaHE jeAHOTPYIMHE M MYJITUTPYIHE AUCKPETHE TPAHCIOPTHE jegHAUYMHE
HEYTPOHA 3a TOPUBHU €JIEMEHT [UIIMHAPUYHOT 00JIMKa ca ¥ 6€3 IpU/pY>KeHe KOIYJbUIIE U 30HE XIaJU0oLa —
CBaKa ca Ba pa3JIMunTa yclI0Ba Ha CIOJballlkO] FpaHulu. BambaHocT pesynraTa f0OMjeHUX HOBOM METOJIOM
IpoBepeHa je nopebemeM ca pesyararuma octBapeHuM nporpamuma MCNP-4B u ANISN.



