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This paper shows some analytic approximations of the H-function derived earlier and
obtained by decomposition of the angular flux density of particles combined with the
zero order DPN method. A novel solution based on the modified DPN method has
been presented too. The comparison with well-known Chandrasekhar’s results ob-
tained by numerical procedure and with Pomraning’s analytic approximations has

been performed.
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INTRODUCTION

Since the early days of studying of the trans-
port equation, the fundamental H-function has
been introduced as a part of solution to the problem
of particle reflection from the homogenous target.
The values of the function have been numerically
determined with great precision and tabled in detail
[1], and for a long time its thorough mathematical
studying and application has been one of the central
questions of the transport theory, especially of the
particle albedo problem.

Beside numerical determination of the
H-function by direct iteration of the characteristic
non-linear equation, analytic iterative solutions of
the same equation have been attempted as well. One
of the first strivings started from the results ob-
tained by Case’s singular eigenfunctions method,
and conveniently chosen test function [2]. Even
though the H-function was determined in the sec-
ond iteration with precision to the fourth important
digit, the procedure showed as very clumsy and her-
metic because the final result included complex ex-
pressions containing new fundamental functions
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(for example, the X-function, well known in Case’s
theory). The problem of the particle transport in
half-space and the related task of determining the
H-function have been solved lately by multiple col-
lision method [3]; however, this procedure has been
judged as complicated and impractical [4].

Not long ago, it has been noted that the proce-
dures of the analytic approximation of the H-func-
tion based on a verified approximation method
were not used enough. Namely, as already said, the
advantage was given to numerical integration of the
characteristic non-linear integral equation of this
function and its very precise calculation. However,
the greatest potential advantage of analytic approxi-
mations has been the possibility to solve the more
complex energy albedo problem as well in a consis-
tent analytic manner, which can be presented by the
H-function. Therefore, a few analytic approxima-
tions of the H-function have been recently pro-
posed [5, 6] based on the standard and modified
DPN method [7, 8]. Another form of the analytic
approximation of the H-function has been pre-
sented in this paper, which is especially efficient
with the lower values of the particle multiplication
parameter ¢, and is based on the specific decomposi-
tion of the angular flux density and on the zero or-
der DPN method.

ANALITIC APPROXIMATIONS
OF THE H-FUNCTION

In the case of monoenergetic particle trans-
port in plane geometry, the classical transport the-
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ory has given an exact solution for the angular flux
density of the reflected particles ¢(0, u, 11, ) [1, 4]

§(0— ) =S HEMACR) | o ()
2 My + 1

and for the half-space reflection coefficient y(c, 1,)
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where the H-function H(c, u) is defined as a solution
of the nonlinear integral equation
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In egs. (1-3) p stands for the cosine of the angle
between the vector of particle velocity and the normal on
boundary surface at x = 0 oriented inside of the me-
dium; p, is the cosine of the angle of incidence of the
plane source of initial particles which cross the boundary
surface, S(0,p,1,) =0(p—u,) /[ty 1, >0, while ¢
presents the particle multiplication parameter. It is also
assumed that the particle scattering function has an iso-
tropic form.

If one compares the exact solution for the
half-space reflection coefficienty(c, 1, ), given by eq. (2),
with the approximate formulae fory(c, u,) derived pre-
viously through the ordinary and modified DPN proce-
dures [9], then the approximate analytic expressions for
the H-function can be obtained almost directly.

The ordinary DPN method

Starting with the flux decomposition

¢(x’/’t’u0)=¢(O)(x7u7u0)+¢S(x’ll’l7u0) (4)

where ¢ and ¢ *denote the angular density fluxes of
unscattered and scattered particles at the distance x
inside the medium, respectively, and applying the
ordinary DP0 approximation [7], one gets
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The first modified DPN procedure

Based on the flux splitting
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with¢ " representing the angular flux density of the
single scattered particles, u(u) — Kronecker’s unit
step-function and ¢ — the angular flux density of the
rest of particles, and the ordinary DPO approxima-
tion, it is derived [6, 8]
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The second modified DPN procedure -
new approximation of the H-function

Applying the angular flux decomposition

¢(xs M, L, ) =¢(0)(x7 M, L, )+

+° (X, u(—) + ¢ (x5, i 1,)  (10)

in which ¢“ represents the particles scattered after
each collision strictly into directions oriented to-
ward the boundary plane x = 0 [10],
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and the modified DPO procedure, the reflection co-
efficienty,, (c,u,) is obtained
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The comparison of the exact expression (2)
with the approximate result (12) brings to the third
approximation for the H-function:

1+(2-0),
(L+ 2T =cpy )7 (e, o)
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In egs. (11-13) the new function ¥{(c, ) is in-
troduced, defined by [10]

7(e 1) =1 —%“ 11{1 +1J (14)
U

In the previous expressions, the origin of ap-
proximations of the half-space reflection coefficient
y and the H-function is emphasized by the sub-
scripts DPO, M, and M,.

COMPARISON WITH REFERENT
CHANDRASEKHAR’S RESULTS AND
POMRANING’S APPROXIMATIONS

Formulae obtained by modification of DPO
method show remarkable accuracy, especially for
small values of the parameter c. Table 1 gives the
comparison of values of the approximation
H, (c,u) with Chandrasekhar’s calculations
(marked with H_, ), exact to the sixth decimal
digit. For ¢ = 0.1, the maximal result deviation is
to three units of the sixth digit, for ¢ = 0.3, the dif-
terence is to three units of the fifth digit, and for ¢
= 0.6, the difference is to the two units of the
tourth digit.

However, we compare the accuracy of the ana-
lytic formulae (6), (9), and (13) and the two
Pomraning’s approximations of the H-function de-
rived recently [11]:

- VTH 15
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Table 1. Values of the H, (c,u) approximation and
Chandrasekhar's H- functlon for y € [0.1] and three
values of the parameter ¢

H(c, 1)

u c=0.1 c=03 c=0.6

Hy Hey Hy,

M, Hey Hy

Hey

2 2

0.0 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
0.1] 1.01236 | 1.01238 | 1.03968 | 1.03989 | 1.09043 | 1.09137
0.2| 1.01863 | 1.01864 | 1.06103 | 1.06115 | 1.14462 | 1.14517
0.3| 1.02300 | 1.02300 | 1.07635 | 1.07637 | 1.18588 | 1.18587
04| 1.02631 | 1.02630 | 1.08819 | 1.08811 | 1.21916 | 1.21861
0.5] 1.02894 | 1.02892 | 1.09771 | 1.09756 | 1.24685 | 1.24581
0.6| 1.03108 | 1.03106 | 1.10558 | 1.10538 | 1.27036 | 1.26893
0.7| 1.03287 | 1.03284 | 1.11222 | 1.11198 | 1.29064 | 1.28888
0.8| 1.03439 | 1.03436 | 1.11791 | 1.11763 | 1.30835 | 1.30631
0.9| 1.03570 | 1.03567 | 1.12285 | 1.12254 | 1.32396 | 1.32171
1.0 1.03684 | 1.03682 | 1.12717 | 1.12685 | 1.33784 | 1.33541
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Equations (15) and (16) are obtained in the
course of the studying of the asymptotic flux behav-
ior in half-space using the variational method and
the singular eigenfunctions method. The constants
J, v+, andy_ are defined by
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and
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+ 2
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while the eigenvalue v is the positive root of
the characteristic eq. [12]

Dty (20)
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It is obvious form eq. (17) that the parameter
J is related to the extrapolated endpoint z;, of the
Milne problem, which accurate values are previ-
ously numerically determined [13].

Figure 1(a)—(c) compares the relative error g of
the formulac H,,,,, H,, and H,, calculated by egs. (6),
(9) and (13) with thc relative error of the Pomraning’s
expressions H,, and H, calculated by egs. (15) to (19)
for three values of the parameter c(c=03,c=0.0,
and ¢ = 0.9). For each value of the parameter ¢ the
worst analytic approximation Hpp (6) is presented as
well as the one of two approximations obtained by the
modified DPO method — expressions (9) or (13),
which is more accurate for the selected value of the pa-
rameter c.

The two Pomraning’s formulae H, and H, do
not approach the exact value of the H- funcuon foru =0,
but they are very accurate for 11 — 1.0. However, for
any value of the parameter ¢ < 0.9it is possible to find at
least one of the two approximations (9) or (13) which is
more or equally accurate as the best Pomraning’s ap-
proximation. Moreover, the approximations H, and
H, have some other weaknesses which were common
for the previous analytical approximations of the
H-function [2, 3]. Namely; these expressions are rather
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Figure 1. Comparison of the H-function analytic ap-
proximations with Pomraning's expressions for three
values of the multiplication parameter ¢

complicated and very unusable for the consistent analyt-
cal procedures. They also include the new parameters
specific for the different external transport methods on

which the proposed solution depend (for example, the
eigenvalue v of the singular eigenfunctions method and
the extrapolated endpoint z, of the variational method).
Further improvement in the precision of the ana-
lytic approximations of the H-function, if at all possible in
form of a simple expression, should be looked for in the
ranges of the values ¢ ~ 1 and p~ 1.

CONCLUSIONS

Analytic formulae (6), (9) and (13) are exact
for u= 0and ¢ = 0, which is not often the character-
istic of other analytic approximations. They are of a
simple shape and do not include parameters taken
from another transport methods. Tivo approxima-
tions, H,, (c,u) and H,, (c,u), made by modifica-
tion of DPO procedure, are of high precision. This
applies especially to the formula H, (c,u) (13)
when ¢ < 0.6, which is by accuracy close to the nu-
merical approximations. Being very simple, formu-
lae are easily applicable to the calculation of the en-
ergy dependent transport problem in which the
Chandrasekhar’s H-function appears as a compo-
nent of the final solution.
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Pogosyo CUMOBHR, Cpnko MAPKOBHUh
JEJAH 3AIINC O AHAJIMTNYKUM AITPOKCUMAIINJAMA H-®YHKITUJE

Y pany cy IpuKkasaHe HeKe paHuje U3BefileHe aHaTUTHUKe anpoKcumanyje H-pynkuuje godujene
IIOCTYIIKOM pa3fBajalba yraoHe rycruHe ¢uykca uyecruna u npuMeHoM DPN merope Hyartor pepna, u
MIPEJCTAB/bEHO j€ jE[HO HOBO pEUIEmE 3acHOBAHO Ha MoaudukoaHoj DPN mertoau. M3ppmeHo je
nopebemwe ca no3HaTuM YaHgpaceKapoBUM pe3yNTaTHUMa JOOMjE€HUM HYMEPUUKUM ITOCTYIIKOM, Kao U ca
IToMpaHMHTOBUM aHATUTUUKUM allpOKCUMAIjaMa.



