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The simulation of singular nonlinear transport equation is obtained via corresponding
neutron or photon kinetic equation. The conditions for convergence of the
nonstationary transport process toward the pure diffusion across the equilibriums are
presented. For such purpose the method of transport scattering is exploited. The goal
of these results is optimization of fusion fuels via neutron diagnostics.
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INTRODUCTION

This paper is focused on the problems related to
neutron diagnostic developments for the specific con-
ditions of the plasma focus device operation. We shall
see that we can obtain more general results for the
neutron scattering than it is given by Lax-Phillips the-
ory for acoustic waves. The various neutron diagnos-
tic techniques used to determine the characteristics of
the neutron fields of the plasma focus device have been
developed with the following aims: identification of
the relationship between neutron emission and
plasma focus device operational parameters (e. g. elec-
tromagnetic quantities), and development of the
plasma focus device as a fast neutron generator. We
shall investigate the behaviour of neutron transport in
different devices. Because nuclear power plants (NPP)
are monitored by humans, their safe operation must
be ensured by many operating procedures and safety
margins. Various computer codes for diagnosing NPP
abnormal operations have been developed. Our algo-
rithm recognizes the prepared scenarios and it classi-
fies them into groups. Global bifurcation problems
mean that every solution is convergent to the set of
equilibria if £ = 0. As an example we can consider the
tollowing. The new feedback control of the neutron
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emission rate and the radiative power in the divertor
has been performed [1]. The feedback control of neu-
tron emission rate was demonstrated with controlling
the heating power. Discharge operation will follow a
sequence of the scenario phases. The model predicts
the criterion for the loss of stability of the H-mode in
fusion devices, and the observed Hopt bifurcation
from the stable to the unstable H-mode gives the at-
tracting limit cycle which behaves like the edge local-
ized modes (ELM) plasma state [2]. The implementa-
tion of the feedback control concepts makes
attainment of stationary plasmas possible. The future
research will be concentrated on experimental verifica-
tion of characteristics of tomographic measurements
using a laboratory model of nuclear fuels.

Since the discovery of the H-mode, progress in
the experimental and theoretical understanding of this
improved confinement regime has been made. One
aspect of the phenomenon is its bifurcation character.
The plasma is monitored through the transverse light
emission. Stability and reproducibility of the plasma
have been derived out of corresponding measure-
ments. Upon stabilization, the instability amplitude is
reduced by factor 100, and the improved plasma con-
finement is observed (see [3]).

MATHEMATICAL INVESTIGATIONS OF
BIFURCATIONS

The Cauchy problem for the nonlinear
Boltzmann equation in the kinetic theory of neu-
tron or photon has a unique classical solution f*,
locally in time ¢ at the interval [0,7] independent of
the mean free path ¢ > 0, if the initial distribution f
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is sufficiently close to an absolute Maxwellian and is
analytic in the space variable x. When ¢ — 0, f°
converges on [0,7] to some . Fort e [0, 7] the limit
£9is a local Maxwellian.

Theoretical work has included the develop-
ment of a variety of techniques for determining the
stability of local equilibria and bifurcations of local
equilibria in general dynamical systems. Relative
equilibria of equivariant dynamical systems are
group orbits which are invariant under the flow of
the dynamical system. In physical applications they
typically correspond to the constant shape solutions
which evolve by rotating or translating in space.
The main goal is to explain the relevance of the spec-
tral flow to the bifurcation theory. Let
F:U' x I — X be a continuously differentiable map-
ping defined on the product of a real interval I with a
neighborhood U’ of the origin in a real Banach
space X. We consider the bifurcations of zero equi-
librium. Suppose that (0,4) = 0 for allA in 1. Solu-
tions of the equation F(f',4) = 0 of the form (0, 1)
are called trivial. A bifurcation point for solutions of
the equation F(f,1) = 0 isa point A" in I, such that
every neighborhood of (0, 1") contains nontrivial
solutions of this equation. Let L; =D F(0,4) be
the linearization of the mapping ¥, = F(0,1)at the
trivial solution. By the implicit function theorem,
bifurcation can occur only at the points where the
operator L, is singular. The set of bifurcation points
the mapping F is a closed subset of the set of singu-
lar points X(L)={1 /L, }, L, is noninvertible of
tamily L. However, in general, the set of bifurcation
points of 'may be empty even though the singular
set (L) 1s very large.

Assume that the behavior of a device can be de-
scribed by an differential equation f* = F(f,e¢t). The
system is designed in such a way that " is an asymptot-
ically stable equilibrium point, which corresponds to
the desired behavior. Slow changes of the system’s
characteristics due to the ageing process can be mod-
eled by a slowly time-dependent equation

%=T(f,st), 0<e«d (1)

where F(f, 0) describes the dynamics of the branch
new device. As the eq. (1) is a non-autonomous dif-
terential equation which is difficult to solve, one is
tempted to consider the one-parameter family of
autonomous systems instead

%sz(f,l), A= const (2)

One hopes that if the "quasistatic approxima-
tion” eq. (2) has a family of attractors depending
smoothly on 4, then solutions of eq. (1) should be
close at any given time ¢ to the attractor of eq. (2)
with A =&t [4]. Iff (1) is a family of asymptotically
stable equilibria of eq. (2), then the solution of eq.

(1) starting in a sufficiently small neighbourhood of

£(0) will, after a short transient, track the curve
f’ (et)atadistance of order &. For the ageing device,
this implies that we need not worry as long as the
nominal equilibrium f*(1) remains asymptotically
stable. This naturally raises the question of what
happens if the equilibrium f*(1) undergoes a bifur-
cation at A = A4, which may have a catastrophic
consequence for the device. To avoid such a prob-
lem, one may try to control the system

[ =F(f,2)+B u(f,2) 3)

stable when A = 1. We have

f,:T(f’St)+B us(f’gt) (4)

Since we wish to analyse eq. (4) on the time scale
¢!, we introduce the slow time 7 = efsingular pertur-
bation problem ¢df/dr =F(f,7) + Bu_(f,7). We
have to modify the linearization A,A = 0F/0f of Fat
the bifurcation point.

IRREDUCIBLE TRANSPORT
SEMIGROUPS

Let T(t), t 2 0 be an irreducible C, —
semigroup of positive operators on the ordered
Banach lattice X, and let A be its infinitesimal gen-
erator. Let X and U be ordered by a normal positive
cones X, and U respectively (see [5]). We define a
positive Cy semigroup 7(¢) on (X, X,) to be irre-
ducible if the only closed hereditary T-invariant
subcones of X are {0} and X, . The set of reachable
states from the origin in arbitrary time ¢ by means of
nonnegative controls u is defined as

RY =[T(¢'—s)bu(s)ds, ueL[0,')
0

u(s)eU,, 0<s <t' <t (5)

and the set of reachable states from the origin in ar-
bitrary time by means of nonnegative controls u as

R, =UR/ (6)
>0

The system is approximately positive control-
lable ifand only if X, =VR, (i. e. approximately con-
trollable) where 1 denotes the closure. Since from
X 4 1s anormal positive cone follows the condition X
= V(X;—- X,), every approximately positive con-
trollable system is approximately controllable. Ac-
cording to the result of [5] the following is equiva-
lent for Banach lattice X: (1) 7(¢) is irreducible, and

(2) T(¢) is ergodic.
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We have the following results. Let T (7) =
= exp (7 A) bea positive Cy —semigroup on an or-
dered Banach space (X, X ): assume that (X, X )
is a Banach lattice ordered by a normal positive
cone X, then equivalent is:

(1) e-df/dr = Af + bu, is approximately posi-
tive controllable for all b e X, /{0}, and

(2) T(7) is ergodic.

Lemma 1. The following assertions are equiv-
alent [6]:

(1) T(7) is irreducible and ergodic,

(2) There exist p such that (oI — A)™! is irre-
ducible and ergodic,

(3) &f" =Af +bu, is approximately positive
controllable for all b € X, \{0},

(4) ¢f' =R(p,A)f +bu, approximately is
positive controllable for all b € X \{0},
and some p, where X, is a closed convex cone in X
&> 0.

The time dependent transport equation can be
written as

e af 7)
or
where f represents the particle density per unit ve-
locity space, and A is the Boltzmann operator. It is
defined by the integrodifterential expression

Af =—vgrad f-6(x,v)f +j;((x, v, V') f(x, v')dV'(8)

The time-dependent transport equation has a
unique solution f (x, v, 7), provided the initial distri-
bution belongs to D (A). The semigroup approach to
the reactor problem leads to an abstract Cauchy
problem in the ordered Banach space X = L (D x V)
where the configuration space D, int D # ¢ is a subset
of R3. The velocity space Vis a closed ball in R3. The
time dependent transport equation is given by

ef’ :Aof—Msterf 9)

where A, denotes the differential operator

Vi — (10)

M;is the operator of multiplication by a posi-
tive measurable functiond : D x V' — R and Kis the
integral operator given by

K, f=x(v) L, v)d/ (11)

where y : D x V'x VV— R is positive and measurable.
d and y are called absorption coefticient and scatter-
ing kernel respectively.

There are different criteria when the
semigroup exp (rA) is a positive irreducible
semigroup [7, 8].

The pair (y,0) of the scattering kernel and the
collision frequency is defined to be admissible if the
tollowing conditions hold:

(1) ¥ (x, V") is a nonnegative measurable func-
tion and & (x, v) is a nonnegative measurable function
inL! (D x V),

(2)6 (% v), and

oy(x v)=[x (x,v,v")dv'are bounded functions.
We consider also the conditions:

(A) F(©O) = ess;(,vsupjé(;( —TV,V)OT < 40

(B) Floy) < - (12)

We now state the next lemma which estab-
lishes the similarity for the transport operator A to
the collisionless transport operator Aq (see [9]).

Lemma 2. Let (X, 5) be admissible. Suppose
(A) and (B) hold.

Suppose also F (o ;) exp F(5) < 1. Then the
wave operators exist, and possess the following
properties:

(1) We (A, Ag) Wy (Ag, A) =
= Wy (Ao, A) Wy (A, Ag) =1

(2) A = W, (A, Ag) Ay TV, (A, Ag)!
We consider the two control systems X and X"

(13)
ef' =Af+b'u,

for A and piare real positive parameters. For irreducible
and ergodic positive semigroups we obtain the fol-
lowing result about reachability of the collisionless
transport systems, actually diffusion systems, from the
initial transport system.

Theorem 1. Let £ and X' be two systems which
are described by assumptions in lemma 2, and
moreover let X be the irreducible and ergodic posi-
tive system. Then some approximately controllable
collisionless transport system is reachable from the
initial general transport system.

Proof. We construct auxiliary bounded systems 2,
and X} associated via resolvents. Since the systems X and
2" are similar by lemma 2, it follows that the bounded
systems Y| and ¥} are also similar. Actually; from S A’ S~
=Awehave SA'=AS,SA'—pS=AS-pS, (pI-A)S
=SpI-A"), S (pI-A" ) = (pI-A)7L S, and finally
S (pl-A" )18 = (pI- A)™!,and conversely. These sys-
tems are positive controllable by lemma 1. Taking A’ =
= Ay and putting A, 1 tend to zero, from formula (13)
we obtain desired continuous path of approximately
controllable systems because the operator § = W, (A,
Ay) tends to identity operator. It is also true for

AM g —uK, -0 (14)

The controllability of the systems will give the
possibility of stabilization of such systems for irreduc-
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ible quasicompact semigroups since such semigroups
are ergodic and strongly stabilizable. After stabiliza-
tion we have stationary regime and we can conclude as
tollows. Consider a system of linear equations

Bo(Nf =K, (Nf+ A A (n)f+S(r) (15)

where the operator A,(y) describes the diffusion and
absorption, K, (v) is the scattering operator, A’ the
fission, S(y) the external sources of neutrons, and f
the neutron density in a given medium. The funda-
mental problem of reactor physics is to determine y;
sothateq. (15) with S =0and A" =A'(yy) = 1 hasa
nontrivial nonnegative solution f; . This problem is
a typical example for the applicability of the
Frobenious comparasion theory. It can be shown that
under certain assumptions the opcrator function
T(y), where T(y) = [A'I -A,(y)]” K () is posmve
and has the property that for every y 20 and is
monotonic in the sense that T'(y) < T(y") whenever
y 2y It follows from Marek’s comparison theory
that the corresponding spectral radii #[7(y)] and
r[T(y")] are similarly related r[T(y)] <r[T(y")] It
moreover, 7(y) is irreducible, then r[T'(y)] < r[T(y")]
whenever y >y' 20, assuming T(y") = T(y) for
y # y'. Because of continuity of T(y) with respect to y
we conclude the following necessary and sufficient
condition for the existence and uniqueness of the
critical parameter ¥, i. e. a value of parameter y, for
whichr[T(yy)]1=1; r[T(0)]>1

SCATTERING THEORY
OF THE LINEAR BOLTZMANN
OPERATOR

The existence of the Moeller operators is usu-
ally proved by use of the Cook theorem that is gen-
eralised to the case of a Banach space. In statistical
mechanics transport phenomena of neutrons and
photons are described by the linear Boltzmann
equation. All results concerning the existence of the
wave operators lead us naturally to the notion of A,
— smoothness for A, = Ag— M;.

Deﬁmtzon 1. Let A, be the generator of a C,
group ™2 ona Banach space X. A linear operatorK,
is called A, — smooth with the constant « > 0, 1f
=K, e ]| , dr <d]| f]| ,holds for a dense set of
vectors fin X (and hence for all fin X). If K, is A, -
smooth with the constant o < 1, then the wave opera-
tors W, (ALA,), W, (A,,A)exist. In[11] Voigt intro-
duced the concept of a locally decaying system in the
context of the transport theory to study the existence
of wave operators. This concept means that for

V(1) = e, im el | V(2) fl] (¢ p)=0 for bounded
K c R™ One can check that itK, (0, - 2) ex-
istsand ifro[K , (0, -A,) < 1 then V(7) is locally
decaying, as 7 — +. One can also prove that ' (7) is

locally decaying as ¢ — [ if K, (0_ - A,) 7! exists
and ro[K ,(0_ —A4;)" '1<1. Under these condi-
tions, the appropriate transport semigroup is irreduc-
ible. As we shall see later, this result holds under some
conditions on absorber and the transport system will
be stabilizable.

If both K L0, - A,)7' exist and if
ro[K , (0, ~A,)! < L, then s-lim r+ V(7)S(~7)
ex1sts s-lim H+wS(—T)V(r) exists (for V(z) = e,
S(r) = eAf), and conversely. Then W_ (A, A, +
+K ) =s-lim t5+=S(-7)V () and W, (A2 +K,,A,)
= s-lim r>+«V(-7)S(7) exist. Moreover, A, + Ky =
=W, (Ay+K,,A)) AW, (A,+K,, A,) ' and
WAy + K, AW (Ay,A, +K ) =W, (A, A+
+K, W, (A, +K,,A,) =1. We can also conclude
that W, (A,A0)A W, (A,Ay) " =A [12]. As we
have pomted out, the power compactness of
K, (0, - A,) ' may be replaced by ro K, 0, -
—Az) ]is an eigenvalue of K, (0, Az)’1 A
similar remark holds for K, (0_ ~-A,)

In 1964 Adamjan and Arov showed the
Lax-Phillips theory of acoustic scattering and
Nagy-Foias theory about unitary dilatations to be
equivalent [13]. The model of acoustic wave scat-
tering is unitary equivalent to shift translation real-
ization, but for the transport theory the appropriate
models are mostly similar to translations, because
we work in the Banach space.

Semigroups of translations on weighted func-
tion spaces on the real line or positive half-line are
particularly well suited to serve as examples for un-
derstanding hypercyclicity since it is easy to deter-
mine the cases when these are hypercyclic [14]. A Cy
— semigroup of bounded linear operators T'(7) is
called hypercyclic provided that there exists f € X
such that {7T'(7) f| r > 0} is dense in X.

One of the most important features of the stabil-
ity theory for linear systems is that it can be carried
over to yield local results for nonlinear systems by
linearization. It is known that a nonlinear semigroup
whose Frechet derivative is an exponentially stable lin-
ear semigroup is locally asymptotically stable. Al-
though hypercyclicity seems to be a property of an un-
stable semigroup, it can also occur in the critically
unstable case, when trajectory grows slower than ex-
ponentially. From this point of view, it is not surpris-
ing that there are globally stable nonlinear systems,
with hypercyclic (i. e. irreducible) linearizations.

GENERAL MODEL FOR
TRANSPORT SCATTERING

Let us consider the nonlinear transport equa-
tiongf = F(f, p)where Fdenotes a nonlinear oper-
ator that is differentiable on a dense domain of a
separable Banach space X x U, where p is a control
vector of parameters.
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After linearization in some equilibrium neigh-
bourhood the following equation holds true

edf' =Adf + B;dp,
Ay =0F/0f, (0
B = 0F/dp

An equilibrium state of an appropriate
semigroup evolution 77 () with the infinitesimal gen-
erator A1, is astate g such that 7y (r)g = g forallz > 0.
In the case of linear transport phenomena the equilib-
rium distribution will be a Maxwell-Boltzmann distri-
bution. After linear transformation of coordinates in a
zero equilibrium neighbourhood, we can write

ef =A,f+Bu (I1)

We shall derive the conditions under which
the nonlinear transport equation will be exponen-
tially stabilizable.

The linear distributed system of interest will
be modeled by the following state-space form

& 2L _af(r)+ Buy (),
ot
F(0)=fos foe DIA) <X (16)

where A denotes the infinitesimal generator of a Cg
semigroup on the separable Banach state space X.
Let U be the separable Banach space of control. We
assume that the input operator B, B:U — X is
bounded and has a finite rank M, and u(7) represent
the inputs for M linear actuators. Thus

M
Bus(t)zzbiutb(r) (17)
i=1

where u,, (7) are locally integrable control functions.
Let T(z) be a strongly continuous semigroup of
bounded linear operators in the Banach space X
with infinitesimal generator A. The following hold:
there exists w,(A) such that

1
wo(A)=}g;10gllT(f)ll (18)

Ifw > w((A) then there exist M, > 1such that
|T(7)| <M e, t20. If ®3(A) <0 then eq. (18)
yields the exponential asymptotic stability of the
zero equilibrium of T'(z), 7 2 0.

The problem with an infinite dimensional sys-
tem is that the spectrum of A does not always deter-
mine the exponential stability of 7(7), that is, equal-
ity does not always holds in s(A) < w((A), where
s(A) is the spectral bound and w((A) is the spectral

e s(A)=sup[Re A A ec(A)]

oo(A)=inf{o|||T(¢)||<M,e"", VT 20} (19)

The equality is so called a spectrum deter-
mined growth assumption. A consequence of the
spectrum determined growth assumption is that if
sup [Rec(A)] < —a then [|T,||< Me™" for some
M > 0, a > 0 and we say that 7(r) = T, (or A) is ex-
ponentially stable.

Let F be a feedback operator F : X—U and let
S6(t) be the Cy semigroup generated by G=A+B E

Definition 2. The autonomous linear system is
exponentially stabilizable in case there is an operator
FinB(X, U) suchthat|| S (7) fo|[<Mpe ™, a > 0,
v > Oforall fy € X. (My, is constant depending on
the initial data f;.)

The semigroup approach to the reactor prob-
lem leads to an abstract Cauchy problem in the
Banach lattice X = L1(D x V) where the configura-
tionspace D, int D # ¢, is a compact convex subset of
R3. The velocity space V' is a closed ball in R3.

In this case we have (@0F/0f ) =Ay)-M  +
+ K , onasuitable dense subspace D(A) of LY(D xV)
of the transport operator Af =Af ~-Mf + K f.

We use the following result [15].

The collisionless transport operator Ay =
=-27,v; 0/0x;, the streaming operator A, = Ay —
- M;s and the transport or Boltzmann operator
A =A)-M; +K, each generates astrongly contin-
uous semigroup 1(7), S(r), T(r) respectively. All
semigroups consist of positive linear operators on
LY(D xV); hence spectral bound and spectral type co-
incide.

The following holds:

s(Ag)=wg(Ag)=0
S(Ay)=wy(A;)<0 (20)
s(A)=wy(A) 25(A;)

The spectral bound s(A;) of A, depends on
the size of 6 nearv = 0; e. g. if § is continuous at ev-
ery point (x, 0) € D x V' then

s(A,)=—inf{5(x,0): x € D} (21)

For every A'>s(A,) the set 44 e o(A),R. A 2
> )"} contains only finitely many elements each of
which is a pole of the resolvent R(-, A) with finite
rank residue.

We have the following:

Theorem 2. Let A be a Boltzmann operator in
X =LY D x V). Lete(0f/0t) =Af + Bu, be a lin-
ear distributed control system with an approxi-
mately controllable unstable part. If absorption
rate d is continuous at every point (x,0) e Dx V
and inf {5(x,0):x € D} > 0, then the control system
is exponentially stabilizable [16].

Definition 3. The system (A}, B) is said to be
similar to (A’, B") onJ = [t,, {] if and only if there ex-
ists an invertible operator SeL (X7, X) such that A’f
=S A;S7Yf, B'=S B, where:
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VI(D(SA;S )N D(A")] = X is valid.

We have the following results:

Lemma 3. If (A1, By) and (A', B') are similar
systems on.J then (A, By) is controllable onJ if and
only if (A’, B") is controllable on J.

Definition 4. The system X} is said to be
quasi-similar to2” if there are two operators S and S’
such that:

(1) $71, §"-! with dense domain,

(2) A1Sf=SA'fand A’'S'f = §’A f with dense
domain, and

(3)By = S B' and B' = §'B; where:

VID(A'S™)AD(S7'A )] =X, and
VDA, S ) nD(S''A")]=X is valid.

Suppose we are free to modify eq. (II) by set-

ting u = F;f + v where v is a new external input.

Thus for eq. (II) choosing a state feedback means
choosing an operator Fy and eq. (II) replacing it by

ef =(A{+BF)f+Bv (22)

Suppose there is a pair [}, S]such that the sys-
tem f =(A,+B1F1)f + By, y = Gx has exactly the
same input-output behaviour as the system X', ¢f =
= A'f + B'v, y = G’x. Then it is said that X’ can be
(feedback) simulated by 2.

The class of all approximately controllable sys-
tems which can be simulated by a given approxi-
mately controllable system X is called the simula-
tion orbit of ¥} and is denoted by O{X}.

In view of the controllability condition im-
posed on elements in O{X}, it is readily verified
that 2'e O{2} if and only if there is a pair {F}, S}
such that S(A;+BF,) = A’'S, SB; = B'. It means
that the systems 2" and ¢f = (A;+ B1F))f + Byv are
similar.

Theorem 3. Let us assume that we can choose
the control parameters p in gf = F(f, p) in such a
way that the system X'| is approximately controllable
andu = F f + v is such that the transport system &f’
=(Ay+ B E))f + Byv is quasi-similar to the trans-
port system X', so that A’ satisfies the hypotheses of
theorem 2. Then the system X’ is in the simulation
orbit of X,. Also, the system X is exponentially
stabilizable [16]. The assumptions of theorem 3.
hold for irreducible, quasicompact semigroups. We
shall investigate the behaviour of stationary solu-
tions of a branch of appropriate transport systems
via strong stabilization and with the convergence
toward diftusion.

The study of the scattering theory for trans-
port phenomena was initiated by Lax and Phillips
tor the streaming group Uy(7) f (x,v) = f (x—7v,v) in
the context of the Hilbert space X = L? (R3 x §?)
[17]. As concrete examples of simulation orbit, we
consider the absorbing transport equations. In [18]
and [19] the representation theorem in the Banach

space X = L (R" x V) for the transport semigroup
U(r) is generalized, which is governed by the trans-
port equation

0

In some new functional space we have
V ={v e R"|0 <v;, Sv|<1}1is the velocity space;
the absorbing cross section ¢ and producing source
function y (x, v, V') are the positive functions in
L™ (R" xV)and L™ (R" x V' x V) having their sup-
ports as functions ofx in a compact convex subset
of R". We can obtain the result for similarity of
transport operators.

The classical scattering operator is W, W_ [20].
By an admissible weight function on £ we mean amea-
surable positive function @ satisfying o(x —1v,v) <
<r(t)o(x,v)forall (x,v), whereris a positive function
such that lim,_,. inf7(7) =0. L1 ={f1 11 fllg =
=[ f(x,v) o(x, v)dxdv<oo} The Lax and Phillips
representation theorem holds for the transport group
U(r)is LY (R™ x V).

Let S(r) and T'(7) be two similar C semigroups.
If one of them is hypercyclic, then the other one is also
hypercyclic. We consider the wave operators
W,(AAg) =s-lim,_, e™ o, W. (A, A)=
s-lim ;e 0e™ Then W, (A,A o)W, (A o, A)f =
=W, Ay, A)W, (A, Ao)f for all f € X. It follows
that the C, groups e and ™0 are mutually similar un-
der some assumptions on admissible pairs (5, ). For ab-
sorbing transport equation we obtain a concrete model
of the simulation orbit for stable systems. Control
problem in fusion devices has initiated the search on
adaptive controllers that adapt their parameters to
changing conditions. Therefore, the topology of the so-
lution set may change during the computation. The
wave operators exist and have the explicit forms. Let

(xy)E)R XI/5()6 v)=6>0 (24)
holds. The following theorem is valid (see [20]).
Theorem 4. Assuming eq. (24), then there ex-
ists a weight function @ such that in L (R" x 1)
the Cy group S(r) is hypercycléc and satisfies
1S@No <L 720, [1S@)f, < e F[| fll, </l fll,-
This group is not uniformly bounded, for 7 < 0;

hence we can not use the Cook’s Lemma for the ex-
istence of W, (A, A,) and W, (A, A) [11].

SIMULATIONS OF BIFURCATIONS OF
TRANSPORT PHENOMENA

Singularly perturbed systems of an abstract or-
dinary differential equation can often be written in
the form

ef =F(x,v,1,8) (25)
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where x and v are vectors x (0) and v (0) are pre-
scribed, 0 <& <1 and usually ranges over some fi-
nite subinterval of 7 > 0. The numerical integration
of eq. (25) involves difficulties because the solution
often features a narrow initial boundary layer region
of rapid change. By using a combination of numeri-
cal and asymptotic techniques, we can obtain an ef-
tective solution method. Treatments may; of course,
break down whenever eq. (25) becomes singular
and F(x, v, 7, 0) fails to have a unique solution. In
the classical theory, it is supposed that the Jacobian
of F(x, v, 7, 0) has stable (i. e. negative real part)
eigenvalues and a reduced problem has a unique so-
lution of the interval of interest.

Singular behaviour at & =7 = 0 describes the
initial layer of the solution of the Boltzmann equa-
tion, and the limit f plays the role of the other solu-
tion in the theory of singular perturbations. The
Cauchy problem for the Boltzmann equation is
written as

LI e LMK fleo= i (26)

or g £

When & — 0 eq. (26) raises a singular perturba-
tion problem. To find the corresgonding reduced
problem, suppose f* have a limit f~ and &(f + v/e -
-V, f%) = 0ase — 0. Then letting etend to 0 in eq.
(26), we find

(M;s+K,)f=0 (27)

Unique solutions to eq. (27) are Maxwellians.
Ase — 0, fy should be chosen indefinitely close to
the Maxwellians. Local solutions exist on the interval
[0, °], 7° > 0, depends on & as well as fy may tend to 0
with . We shall derive convergence toward diffusion
case for the appropriate transport control systems
with feedback.

We have a notion of singular hyperbolic set if at
every pointx there exists decomposition 7, M = E, @
F, of the tangent space into two subspaces E, and F,
such that the linear flow contracts exponentially, and
is exponentially volume expanding restricted to F,:
:det (D7 (x)| F,.) < Ce™* forall r > 0, for the 3-di-
mensional flow. It should be dominated by the one in
the E, direction: ||Dg’(x)el|/|| Do’ (x) fl| < Ce™**
[21].

If there are equilibrium points in A, they
should all be hyperbolic (no eigenvalue with zero
real part). If U' is open in X and T(7) U' is contained
in U' and relatively compact for all sufficiently large
7, then A = T(7)U" is a compact attracting set,
with fundamental neighborhood U'. Let T(z) be a
dynamical system, i e. a group or semigroup of
maps X — X parametrized by a discrete or continu-
ous time 7. There often exist subsets A of X which
attract neighboring points f, meaning that 7(z)f
tends to A when 7— «. Such subsets A are called at-

tracting sets or attractors. In the simplest case A is
an attracting fixed point or periodic orbit. In the
case of transport equation the fixed points will be
Maxwellians. If an attracting set consists of a num-
ber of disjoint invariant pieces, one would like to
consider each piece as an attractor, removing irrele-
vant points like (perhaps) wandering points. Exam-
ples of irreducibility conditions are: positive transi-
tivity (there isx € A such that the set of limit points
of T(r)f i1s A) or existence of an ergodic measure
with support A.

One of the most fundamental concepts in the
study of dynamical systems is that of the rate of
growth of a quantity with time. Perhaps the most fa-
miliar example of this is the rate of expansion or con-
traction of infinitesimal perturbations (i. e. of tan-
gent vectors). Recall that if 7 : X — X is a
diffeomorphism of a compact manifold X, x € M and
feT M, then this is given by A(x, ) =limn—»(1/n) -
-log|| D, T" f|| whenever the limit exists. If u invari-
ant measure is ergodic, then A takes on only a finite
number of possible values, called Liapunov expo-
nents. In many problems it is important to dist-
inguish between uniform and non-uniform conver-
gence of growth rates. An invariant set is hyperbolic
if the tangent space admits a continuous decompo-
sition into expanding and contracting subspaces
DT fl|= ce™|| fIl; [ID.T"fll< A /c)e™|| fl].

For generally uniformly hyperbolic diffeo-
morphisms (Sinai, Ruelle, Bowen) have shown that
there are finitely many probability measures gy, gy
such that lim (1/n) Xio [ T"(f)]=]edy; for all
continuous ¢:M — R and for points f in a positive
Lebesque measure subset B(y,) of M, i = 1, ... (.
These measures are called SRB measures and the sets
B(p,) are the basins of these measures [22].

We consider some kind of evolution of infinite
dimensional nonlinear systems near equilibriums.
As a model, we take quasicompact, irreducible and
absorbing transport semigroups.

In acoustic and electromagnetic problems, the
method of approximating the field scattered by a
moving body is to calculate the stationary field scat-
tered by the body at each time #. This yields a
time-dependent sequence of stationary fields re-
terred to as the quasi-stationary fields [23]. In the
problem of controlled fusion we have the situation
of the controlled path of stabilizable transport sys-
tems. We  consider transport  equation
['=Agf-Msf+K, f+Bu(r). We shall assume
that f) is the solution of the stationary transport
equationA o f; ~Mf; + K, fi + Bu(f) = 0. The er-
ror is E(t) = f(t) — f, (1)

We shall obtain the possibility of stationary
solutions if we also take control mechanism in the
bifurcation phenomena. Let us consider a singu-
larly perturbed problem of photon or neutron
transport in a time-dependent region [24]
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y {AO (A a2k }f(f)+Bug(f) (28)

Since ¢ is a very small parameter, it is reason-
able that the time derivative in eq. (28) is small
compared with other terms. The goal is therefore to
compare the solution of such an equation with the
solution fi(r) of a simpler one, called the
quasi-static approximation, which satisfies the fol-
lowing equation

(Ao_1M5+11<lj]q(f)+3ug(f):0 (29)
& & &

obtained by deleting the time derivative term in
the original problem (1/¢) (Ay —M + K, ) f(7) +
+B u,(t) = 0[24].

It could be done in a better way by including
control and stabilization when it is possible. If the
transport semigroup is quasicompact, irreducible
(hypercyclic), then the appropriate system is stab-
ilizable. It means that with the appropriate control in
cach ergodic subclass we can reach stable stationary re-
gime.We have df/dr =[(A /) —(M 5 /e) + (K, /¢)]-
f(r)+Bu,(r). For wu,(r)=Ff it ftollows
[=1/e)(Ag -M; +K,)f + BF,f whereftends to
some equilibrium. The absolute error E between the
exact control system and stationary approximation
tends to zero after taking the stabilization. From this it
tollows possible description of optimal work of trans-
port devices. The errors will tend to zero for the sys-
tems stabilizable in a finite time intervals [z, 71], [7],
], -..[tn1, TN

We use the method of quasistatic approxima-
tions in combination with stabilization.

As a consequence we have the next theorem.

Theorem 5. Let &f' = F(f, p) be a nonlinear
transport system that is in the simulation orbit of ir-
reducible, absorbing quasicompact neutron kinetic
equation. Then there exists a sequence of times 71,
7, ...T, With convergence to diftusion, of solutions
of stationary transport problem.

When evolution of transport system changes
slowly in relations with photon or neutron trans-
port, the tomography, based on scattering opera-
tors, is possible.

As a conclusion, we have that here obtained
model could be useful for numerical simulations of
the nonlinear phenomena with the better degree of
accuracy then one which can be achieved by experi-
ments. The same result holds if transport phenom-
ena can be found as simulation orbit of transport
equation of the type (7) under conditiona -6 < 0.

CONCLUSION

In the aim to obtain the possibility of uniform
stabilization of a control system we used the
method of adaptive controllers for nonlinear trans-

port systems. Instead of theoretical results of the
type of Trotter-Kato theorem for linear semigroups
we used the method of neutron tomography for ob-
taining the desired stabilization with considering
the wave operators in vertical and horizontal direc-
tion on locally linearizable pieces. This method can
be extended on periodical cases (or, more generally
adaptively recurrent with avoiding the method of
Cook). On this way, it opens the possibilities for ex-
perimentation with the influence of real actuators
on different devices in nuclear technology and radi-
ation science.

For more precise mathematical treatment of
some aspects of ions transport behaviour see the
refs. [25, 26].
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Hamuno PACTOBUHR

TPAHCIIOPTHA TEOPUJA U TEOPUJA CHUCTEMA

Kopuithewem ofrosapajyhe KMHeTHYKE jeJHAYMHE HEYTPOHA, WK (POTOHA, CUMYJIMpaHa je
CHHTYJIapHa HeJIMHeapHa TPAaHCIIOPTHA jefiHaunHa. [TocpeicTBOM paBHOTEKHUX CTalkha MPUKa3aH je yCIOB
KOHBEPIreHIMje HeCTallMOHAPHOT TPAHCIOPTHOT Mpoljeca peMa YicToj Audy3uju. Y Ty cCBpXy KopuiirtheHa
je MeToyia TpaHCOPTHOT pacejama. LInib oBOT ncTpaknBama je onTuMu3anyja py3noHOT ToprBa MOMohy
HEYTPOHCKE AMjarHOCTHKE.

Kmwyune peuu: tupawciiopitina jeOnavuna, bugyprayuja, cilabuausayuja, HeyimpoHcKka OujazHoCiiuKa,

KOHIIpoaucana ¢y3uja, womozpaghuja



