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The aim of this work is to analyze the diffusion and the slowing down of high energy
proton shots through a target. Analyzing the phenomenon rigorously, with the full
transport equations, means tackling many difficulties, most of which arise from the
long range nature of the Coulomb interactions, involving more than one particle si-
multaneously. The commonly used approach of neglecting the multi-body collisions,
though correct for rarefied neutral gases, often leads to very poor approximations
when charged particles moving through dense matter are considered. Here we present
a Monte Carlo simulation of the Fokker-Planck equation where the multi-body colli-
sions are taken into account. The model allows the calculation of a point-wise distribu-
tion of energy and momentum transferred to the target.
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INTRODUCTION

When charged particles move through solid
matter, energy and momentum exchanges occur
through a large variety of processes in which the
electromagnetic interactions predominate. Analyz-
ing the system by the transport equation means to
tackle many difficulties, most of which arise from
the long range nature of the Coulomb interactions.
The commonly used approximation of neglecting
the multi-body collisions often leads to very poor
approximation when solid matter is considered.

In this paper, a numerical simulation of the
Fokker-Planck equation is presented, where the
multi-body collisions are taken into account.
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THE FOKKER-PLANCK EQUATION

Let’s focus our attention on a proton which
moves through a target. The trajectory of the test
particle in the phase space can be studied as the
Brownian motion of a heavy particle within a me-
dium composed of a large number of light particles:
the heavy particle undergoes many collisions with
little energy and momentum exchange. In the long
run, these interactions lead the system toward the
equilibrium. In this paper, protons impinging on a
solid target are considered, which is the reason why
the test particle mass is smaller than the field particle
masses; however, most interactions are “large” im-
pact parameter shielded collisions and the deflec-
tions are accordingly small.

It is known that the Brownian motion can be
studied as a stochastic process whose mathematical
tormulation is the Fokker-Planck equation [1, 2, 3].
After introducing a function ¢(v,Av), which repre-
sents the probability that a particle with speed v un-
dergoes a velocity variation AV within the time Az,
the distribution function f can be determined by
solving the equation:
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where the coefficients " are obtained averaging the
powers of AV:

o :Ait [ (A7) (¥, AT)d(AF) 2)

The first two terms of the above series are re-
ferred to as the dynamical friction factor, (Av), and
the diffusion velocity tensor, (AVAV) .

To determine these coefticients, knowledge of
interaction processes that allows calculating explic-
itly the transition probability function @(VV,Av) is
needed. Usually, a Boltzmann type assumption is
made and only binary collisions are considered.

Presented here is a numerical simulation
where the effects of large impact parameter
multi-body collisions are considered.

NUMERICAL SIMULATION

One of the main difficulties in simulating
the trajectory of a charged particle through solid
matter consists in the fact that one cannot speak of
amean free path. Due to the long range nature of
the Coulomb force, the particles interact continu-
ously.

By using the molecular dynamics technique,
the trajectory of each particle is built calculating the
positions, #, 7,..., Iy, and the velocities,
Vi, Va, ..., vyat the end of the time intervals Aty
Aty, ..., Aty into which the story is divided. After
choosing the number and the length of the intervals
opportunely, the electric field acting on the test par-
ticle is assumed constant within each interval and
calculated starting from a given probability distri-
bution which depends on target composition and
density. In this way, the transition probability from
point (7, , v, ) to point (¥ .1,V ) is governed by the
force

F=VU(F) 3)
generated by the multi—body potential

u(r)= Z (4)
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here expressed as sum of pair potentials which are
simpler to implement into a program. In equation
[4], e is the electron charge, g; is the i-th field particle
charge, and & is the vacuum dielectric constant. The
computation of U(r), which demands the knowl-
edge of the target particle distribution function, is
the central problem. If treated without any approxi-
mation, the effect of all the particles in the system
must be taken into account and the equation of mo-
tion must be solved for each particle. This increases
dramatically the run time of the code.

The equation of motion is solved only for the
test particle. The distribution of field particles, both
in physical and momentum space, is determined
trom the knowledge of their distribution function.
A test particle is assumed to interact only with the
field particles contained in a spherical volume Sg
whose radius is of the order of the Fermi length

. (5)

P =
3ne

where Eyis the Fermi energy and 2 is the electron gas
mean density. A further hypothesis is that the proba-
bility of finding N particles within the Fermi sphere
follows Poisson distribution

vy
_F
=——¢ 6
PN N (6)
where nis the mean number of particles containe
in Sy, which depends on the target density. In this
way, the potential is given by the sum of the terms

()Z
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where U, (r) is the potential due to the particles out-
side of the Fermi sphere. At each step, after deter-
mining the number and position of the target parti-

cles in Sp it is possible to evaluate the force
accelerating the test particle:

R N | B,
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where the subscript s refers to the s-th field particle
species. When a proton interacts with an atom at
very short distance, i. e., when the impact parameter
is shorter than the atomic radius, instead of eq. 8
the following equation is used

~ 2,2 [F-7o| .
ol 28¢5 7)aVUL(F) (9)
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being 7, the position of the atom. In this case the
proton interacts with the screened field of the nu-
cleus. Applying the model to a metal target, in order
to evaluate U, (), the nearly free electron gas ap-
proximation was used, considering the metal (alu-
minum) as a dense plasma composed by free elec-
trons and once-ionized atoms. The proton is viewed
as a travelling charge that induces a dlsplacement
field in the electron gas of the target. Hence, VU, is
a frictional term which dissipates the energy of the
proton. Poisson’s equation was used to determine
the electrostatic potential whose gradient in the di-
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rection of motion is the stopping power. By using
the Fourier transform, one finds [4]

ﬁ _ 2n’ [pLo ({ -1
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}dpl do (10)
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where a is the Bohr radius, o = E/h, p, is the p
component perpendicular to the direction of the
motion and 3 denotes the imaginary part of the ar-
gument. The following hypothesis is made
dE v
VU, =— = 11
255 5 (11)
In determining the dielectric function ¢(p,®),
one can use the relationship [5]

F) 2E ] -1
—J(p. )= o {(p’w)} (12)

where

2.2
E, =", (13)
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is the plasmon energy, describing the collective os-
cillation of the electron gas, with one electron from
eachatom. The function f is the generalized oscilla-
tor strength (GOS) given by [6]:

f(p.E)= ZT’i M| (14)

where M is the matrix element for optical dipole
transition. Under the action of the force F the pro-
ton acquires the acceleration @, and undergoes the
transitions:

Vil =V +a At (15)
and

P ST +va:+%&,€ (> (16)

from state (Fy, ,V ) to state (Fy,q,Vg . )-

APPLICATION OF THE MODEL

The model has been used to study the slowing
down of 1.5 MeV protons through an aluminum
target.

The space distribution of free electrons and
once-ionized atoms within the target has been con-
sidered uniform. The probability of finding one of
these particles in a shell of thickness dr; ata distancer
from the test particle, is given by

dr = 3y
p(r) > (17)

and the cumulative probability of finding a particle
at a shorter distance than 7 will be

r r 3
[ p(t)dr =— (18)
0 AF

Concerning the momentum space, a Fermi
distribution was assumed for free electrons and a
Maxwellian distribution for the atoms. Figure 1
shows the proton range obtained for difterent pro-
ton initial energies. In fig. 2, one can see the proton
distribution as a function of depth, at time 10~ s.
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Figure 1. Proton range
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Figure 2. Proton space distribution at time 10 s

Figure 3 shows the proton energy distribu-
tion for a proton shot of 1.5 MeV, at depth 10" m
One can see that the spectrum is almost mono-
chromatic. Figure 4 depicts the proton spectrum
at depth 1076 m, where the momentum straggling
of the proton beam is sensibly increased.

These simulations show that within a thick-
ness of 10 m the protons are completely
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Figure 3. Proton spectrum at 1077 m
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Figure 4. Proton spectrum at 10°m

thermalized. The time of the process is smaller than
107 s.

CONCLUSIONS

A numerical code that describes the diffusion
of heavy ions through metallic targets has been pre-
sented. The commonly used approximation of ne-
glecting multi-body collisions has been removed.
The code was originally developed for plasmas [7]
and then modified to describe heavy charged parti-
cle diftusion through solid matter [8].

The aim of this work is to obtain a Monte Carlo
code that gives an exhaustive description of the slow-
ing down process. At present, the code is still in its
developmental stage. However, it has been possible
to test it in order to describe the high energy proton
diffusion through an aluminum sample, estimating
the proton range and the proton spreading, both in
the physical and the momentum space.

The knowledge of energy spectrum is impor-
tant in fields such as micro-beam analysis [9] and ra-
diation protection [10], where quantifying and
identifying the reactions produced in the medium is
of fundamental interest, as the phenomena induced
depend on the energy of the interacting particles.
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®panyecko TEOJOPH, Bunhienno MOJIMHAPU

NCTPAXKUBAIBE YCIIOPABAIBA BUCOKOEHEPIETCKOTI ITIPOTOHA
KOJN ITPOAUPE KPO3 METAJIE IIOCPEACTBOM MOHTE KAPJO CUMYJAIINJE
DOOKEP-INTAHKOBE JETHAYUHE

Cpxa OBOr paja je ImpoyuyaBame AUQY3Hje U yCIOopaBakba BUCOKOEHEPreTCKOI MPOTOHA
ucnajpeHor y Mety. CTpora aHanusa oBe [ojaBe, HOMOhy OTIYHUX TPAHCIOPTHUX j€IHAUNHA, IPEJICTaBIba
HOAYXBAT IyH Telllkoha off KOjux MHOTre NOTu4y of npupofe KynoHoBux uHTEpaKuuja {yror AoMeTa Koje
YKJBYUYjy BHIIE Off jelHE YECTHUIIC UCTOBPEMEHO. Y 0ONYajeHO 3aHeMapHBamba BUIICUCCTHYHAX CyAapa,
Majia McIpaBaH IPUCTYII 3a paspebeHe HeyTpalHe TacoBe, YECTO BOAU BPJIO CllabUM anpoKcHMalyjaMa
KaJa ce pa3MaTpa KpeTame HaeJeKTPUCAHUX YeCTHIa Kpo3 rycre MaTepujase. Ofie je npukasaHa MoHTe
Kapno cumynanuja ®okep-IlnaHkoBe jefHauMHE ca ypauyHaTUM BHIIEUYECTUYHUM cyfapuma. Mopen
MOMYyIITa N3payyHaBamke TaUKACTE PACHOMCNIE EHEPTHje B MOMEHTA IIPEHETUX Ha METY.

Kwyune peuu: @okep-Ilaankosa jeonauuna, Monitie Kapao cumyaayuja, Haeaekilipucame ueciiiuue,
sulleclUpyKe UHiliepaxkyuje




