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The general methodology behind 2D arbitrary geometry neutron transport -
AGENT code is the theory of R-functions, 3Vr1>17ich allows for simple modeling
of complex geometries, and the method of characteristics, which solves the in-
tegral trans];ort equation along characteristic neutron tr?jectories. This paper
focuses on the extension of the methodology to account for 3D lattice geome-
tries. Since the direct application of method of characteristics to 3D non-homog-
enized core configuration may require a tremendous amount of memory and
computing time, an alternative approximate solution based on coupling 2D
method of characteristics and 1D d];&usion solution is developed. The planar 2D
method of characteristics and axial 1D diffusion solutions are coupled
through the transverse leakage. The use of a lower order 1D solution in the
axial direction is justified by the fact that more heterogeneity in current PWR
and BWR reactor cores occurs in the radial direction than in the axial one.
In order to demonstrate the versatility and accuracy of the AGENT code, a
2D heterogeneous lattice problem, C5G7 is described in details. A theoretical
description of the coupling methodology for 3D method of characteristics so-
lutcion is followed by preliminary valigg,tion in comparison to the DeCART
code.
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INTRODUCTION

This paper focuses on the recent development
of an advanced computational environment intend-
ing to provide researchers and educators with tools
for an open-architecture neutronic analysis and con-
figuration of University Research and Training Re-
actors (URTRs). This environment is to allow users
to optimize the experiments, test fuel configura-
tions and provide “virtual” demonstrations. The
centerpiece of the environment is the method of
characteristics based computer code, Arbitrary Ge-
ometry Neutron Transport (AGENT).
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There are a few difterent methods available to
solve the transport equation in 2D and 3D: Colli-
sion Probability Method (CPM), S, Method or
Spherical Harmonics being some of them. The
Method of Characteristics (MOC) has been chosen
to solve the transport equation to address the prob-
lems related to the treatment of multi-scale calcula-
tions in exact geometry. MOC and CPM allow the
representation of local heterogeneities, but the
CPMs yield full collision matrices that set a practical
limit to the size of the problems that can be treated
within reasonable computer resources.

MAIN ASPECTS OF THE AGENT
METHODOLOGY

AGENT solves the integral transport equa-
tion using the MOC [1] in a user-defined number of
energy groups in a geometry represented via the
theory of R-functions [2].The combination of the
R-function based solid modeler and MOC permits
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accurate, efficient and fast particle transport analysis
in complex and heterogeneous geometrical do-
mains. The MOC allows a full treatment of highly
heterogeneous systems with a large number of en-
ergy groups and detailed neutron traks map (satis-
factory number of directions and fine spatial resolu-
tion).

Neutron tracking

A general and efficient way of representing
complex 3D geometries is a problem that spans
many disciplines, from CAD and computer
graphics to pattern recognition and particle trans-
port. The R-function modeler is used to represent
complex domains through the combination of sim-
ple primitives into a single analytical equation (see
fig. 1). This equation defines the domain function
representing a given geometry. It evaluates positive
as a point within the domain, negative as a point
outside the domain and zero as a point on the do-
main boundary. Therefore, to testif'a point is within
a certain object, the code merely has to evaluate the
function at that point. This method is as general as
the typical Monte Carlo approach, but much sim-
pler and significantly faster.

MOC, Monte Carlo, and CPMs, all use the
neutron tracking through so called ray tracing.
Thus, it is necessary to find an effective yet accurate
method to simulate neutron trajectories through
complex and heterogeneous domains. The R-func-
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tion method provides an elegant solution to the ray
tracing problem in AGENT. The method involves
taking discrete steps along the ray, testing the do-
main functions of the objects of interest at each
point. As mentioned above, if the point is outside
the object, the function will evaluate negative; if the
point is within the object, the function will evaluate
positive. Therefore, if the signs of the function at
two consecutive points are opposite, a boundary has
been crossed. Then it is simply a matter of “homing
in” on the boundary, i. e., the point along the ray
where the function evaluates within a certain toler-
ance of zero.

Computational MOC

The AGENT code solves the neutron trans-
port equation providing eigenvalue, volumetric sca-
lar flux and reaction rates. The multigroup energy
cross sections are obtained from the front-end code.
Currently, the cross sections are generated by the
lattice code HELIOS v-1.8 [3]. The spatial
discretization allows for a flexible selection of neu-
tron trajectories by specifying the number of azi-
muthal angles, number of polar angles and the dis-
tance between neutron tracks. Isotropic neutron
propagation along neutron trajectories for each set
of discrete angles starts at the most outer boundary
and reflects back into the system following the user-
selected boundary conditions (reflective, white or
vacuum). The flux solution incorporates a power it-
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Figure 1. AGENT solid modeler based on R-function geometry
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cration with two different acceleration techniques:
Coarse Mesh Rebalancing (CMR) and Coarse
Mesh Finite Difference (CMFED) [4-6].

2D NUMERICAL EXAMPLE

The C5G7 UO, benchmark lattice [7], as
shown in fig. 2, is selected to demonstrate the accu-
racy and efficiency of the code. The results are com-
pared to the DeCART code [8]. DeCART 3D meth-
odology is used as a base to extend the current 2D
AGENT to 3D capability. Therefore, since the
DeCART code is used to validate the 3D methodol-
ogy of the AGENT code, the agreement between
the AGENT and DeCART codes in 2D is of crucial
importance.
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Figure 2. C5G7 UO, assembly geometry

The AGENT eigenvalue shown in tab. 1, ob-
tained in less than two minutes computation time,
is in good agreement with DeCART. This is to be
expected, since both codes are based on the MOC
and both codes use the same set of macroscopic
cross sections and the same spatial discretization.
The slight differences are caused by different ray
tracing methods. DeCART uses a modular ray trac-
ing technique, where the neutron tracking is the
same for each pin cell and is repeated throughout
the whole geometry, while in the AGENT code neu-

Table 1. C5G7 UO, assembly: eigenvalue AGENT
and DeCART comparison

C5G7 UO Difference
assembly 2 AGENT DeCART [10-5]
K-effective 1.33336 1.33321 11.3

tron tracking is carried out for the whole geometry,
thus allowing arbitrary geometry to be easily mod-
eled. The AGENT fine mesh spatial distribution of
thermal neutron flux across the assembly is depicted

in fig. 3.

Group 7 flux [-103]
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Figure 3. AGENT thermal scalar flux distribution
across C5G7 UO, assembly

2D-1D COUPLING THEORY OF AGENT

The AGENT code system will be used for re-
search and educational purposes with the capability
of performing “virtual” experiments and demon-
strations. Therefore, there is an obvious need for a
3D whole reactor core model.

Since the direct application of MOC to 3D
non-homogenized core configurations may re-
quire, at present, a tremendous amount of memory
and computing time, an alternative approximate
3D solution was developed based on the DeCART
code. The 2D planar and 1D axial solutions are cou-
pled through the transverse leakage. The use of a
lower order 1D solution in the axial direction is jus-
tified by the fact that more heterogeneity in current
LWR reactor cores occurs in the radial direction
than in the axial one.

The 2D-1D coupling strategy starts by slic-
ing the reactor core into a user-defined number of
axial planes, as shown in fig. 4. A 2D planar solu-
tion based on the MOC is obtained for each plane.
The 1D axial solution is based on the finite differ-
ence method (FDM) and is obtained for each pin
region.

The derivation of the coupled 2D-1D equa-
tions is shown as follows. In 3D, the Boltzmann
transport equation in steady state can be written
as:

Q.V¥(F,Q E)+3,(F, EYH(F, @ E)=0(, E) (1)
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Figure 4. 2D-1D coupling methodology of AGENT
code

The fission source, as well as the scattering
term, are assumed to be isotropic (with plans to ex-
pand the scattering mode using the P1 approxima-
tion). By integrating the above equation over the
axial direction on a computational plane whose
thickness is /,, the axially integrated equation is ob-
tained as follows:

sin6 cosa—2- + sin @ sin a2 Y (r,, Q E)+
ax oy
+2t(rr’E)¢(rraga E) =
1 - 0 vy
_ L I [Q(r,E)—cos@'P(r,.Q, E)}dz 2)
h, i 0z

which can be also expressed as:

sin6 cosa—2- +sin @ sin a2 Y(r,, 2 E)+
ox oy

3, (r,, EYP(r,, Q, E)=0(r,, E)~TL., )

axial
with

cosf
TLaxial == T (lPtop - leottom ) (4)

z

Here, ¥ (r,, Q,E)is the integrated angular flux
over the axial direction, 7, is the position vector in
2D space and a and 6 are the azimuthal and polar
angles of Q2. The cross sections are assumed to be
constant over the node.

The term TL ;, represents the leakage of neu-
trons from one plane to another. The angular distri-
bution of the axial leakage must be provided from
the axial solver. However, as the diffusion equation
is solved, access to the angular flux distribution be-
comes impossible. The DP0 approximation, i. e. an
isotropic angular flux, is thus used to describe the
angular flux. The axial leakage then only involves

the incoming and outgoing partial currents ob-
tained by solving the axial diffusion equation:

cos6
TL i1 = _T ('Ptop ~Phottom )=

z

coso . .
j top,+ bottom ,+ ) for cosO >0

|, g g
(;OTSQ .;op,+ _j‘tgmttom,+) for cosO <0 (5)

z

Concerning the axial diffusion solver, the 3D
diffusion equation can be expressed as:

VI(F,E)+2,(F, EYO(F, E)=Q(F,E) (6)

The multi-group constants are assumed to be
available from the previous radial MOC solution
and the conventional homogenization scheme. In-
tegrated over the radial directions, the 3D diffusion
equation leads to:

d2
_Dg ?¢z,g + Z‘r,g¢z,g = Qg ~TLpygia (7)

where the term 7L 4, is decribed by

TLradial =

1 right _ rleft
sz,y[‘]x,g (Z) Jx,g (Z)+

HE ()T (2)] (8)

The term 7L, represents the leakage of
neutrons from one pin to another. The net current at
the boundary of the pins has to be provided. It is
computed using the results of the radial MOC
solver

T8 (2) = [ Qu(r,, E, Q)dQ 9)
0

where (r,, E, Q) is the angular flux at the boundary
of the pin.

The derivation of the 3D Boltzmann transport
equation and the 3D diffusion equation, using the
above approximations, leads to the following two
coupled eguations:

- 22D MOC equation coupled with axial leakage:
dy(m -
dsg# + 2, W =0 T (10)
g.m,ik

- a 1D diffusion equation coupled with radial leak-
age:

d? -
-D, ng(zzﬂ) +2r,p¢(237) =0, _TL(erila)l (11)
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Figure 5. Flow chart for the AGENT 2D-1D flux
solver

£

The flow chart of a 2D-1D solver is described
in more detail in fig. 5.

Both MOC and FD equations are solved as a
tixed source problem with only the transverse leak-
age varying from one iteration to the other. A con-
verged solution, in terms of angular flux and leak-
ages, leads to the computation of a new eigenvalue.

The fission source for both equation is then up-
dated.

PRELIMINARY 3D METHODOLOGY
VALIDATION

In order to test the 2D-1D solver imple-
mented in AGENT] two simple test cases have been
developed from the 1.336 benchmark problem [9].
Both test cases are 3 x 3 assemblies with the z-direc-
tion split into three planes:

e Test 1: MOX pin surrounded by eight UO, pins,
and

o Test 2: plane of MOX fuel surrounded by two
planes of UO,.

The results of these two tests, graphically shown
in fig. 6, are summarized in tab. 2. DeCART and
AGENT are giving close results in terms of eigenvalue
for both test cases. However, the results for DeCART

Table 3. Test 1: 3D flux map comparison

.

Figure 6. 3D test cases

Table 2. 3D results: k-infinity AGENT and DeCART
comparison

Test DeCART AGENT Di[f{%r%]lce
1 1.01654 1.01661 _7
2 1.03261 1.03064 190

and AGENT in test 1 are much closer than those ob-
tained in test 2. This is due to the fact that in test 1 the
geometry in the z-direction is homogenous, whereas
in test 2, there is a large heterogeneity in the axial di-
rection introduced by the plane of MOX.

In test 1 the axial leakage is negligible, since the
three plans are identical. Consequently, the difterence
between AGENT and DeCART comes from the dif-
terence introduced by the MOC solver. The difterence
in terms of eigenvalue is equal to only 7-107. How-
ever, in test 2, the radial leakage is negligible: all fuel
pins are identical. The difference between AGENT
and DeCART is then influenced by the 1D axial
solver. DeCART uses a high order Nodal Expansion
Method to treat the 1D problem, while AGENT uses
a simple first order FDM. The difference in the 1D
solver explains the 190-107° difference between
AGENT and DeCART.

The second parameter which has to be com-
pared in order to understand the accuracy of the
model is the agreement in scalar fluxes. The energy
integrated scalar flux for each region has been com-
pared for both test cases. For test 1, as every plan is
identical, the flux map is presented only for the first

Table 4. Test 2: 3D flux map comparison

DeCART flux 0.4763 0.4718
0.4774 0.4728
AGENT flux “0.11 20.10
Difference in %
0.4718
0.4728
~0.10
0.4763 0.4718
0.4774 0.4728
-0.11 -0.10

0.4763 0.4435
0.4774 0.4744
-0.11 -3.08

0.4718

0.4728

-0.10

0.4763 0.4435
0.4774 0.4744
-0.11 -3.08
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plan. The results are shown in tab. 3. For test 2, as
every fuel pin is the same, only the flux in the central
tuel pin is presented. The results are summarized in
tab. 4. Each box contains the AGENT scalar flux
tirst, followed by the DeCART value and, finally,
the difference in percentages between them. The
scalar flux is normalized to 1.0 for both DeCART
and AGENT in the MOX nodes of the geometry:
central pin cell for test 1 and middle plan for test 2.

The comparison of the flux maps leads to the
tollowing conclusion: for test 1, the difference is less
than 0.2% which represents a good agreement be-
tween AGENT and DeCART. For test 2, however,
as the axial solver is involved, the maximum differ-
ence is increased to around 3%. This, again, is ex-
plained by the different methods used to solve the
1D problem in AGENT and DeCART.

CONCLUSION

The current state of computer codes that ad-
dress the flexible neutron transport modeling in re-
search reactor geometries is limited. The common
method for accurate prediction of neutron behavior
is the Monte Carlo method. It provides great 3D
geometrical flexibility and high calculation accu-
racy, but long computation times. Highly accurate
2D modeling of neutron histories within heteroge-
neous domains in short computation runtimes has
been documented using AGENT.

The AGENT code system will be used for re-
search and educational purposes with the capability
of performing “virtual” experiments. There is,
therefore, an obvious need for a 3D whole reactor
core model. The development of the 3D capability
using a 2D-1D coupling strategy has been imple-
mented into the AGENT showing good agreement
with the DeCART methodology. Further improve-
ment and the development of a more accurate 1D
model are currently in progress.
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Mertjy XYPCHH, Tatrjana JEBPEMOBWHh

HYMEPUYKU ITPOT'PAM AGENT 3A CUMYJALINTY TPAHCIIOPTA
HEYTPOHA - BEHYMAPK ITPOBJIEM U OIINC AJITOPUTMA 3A
TPOOJUMEH3UOHA/THO MOJAEJOBAIKBE TOPUBUX CKIOIIOBA PEAKTOPA

Hymepuuku nporpam AGENT pasBujeH je 3a MojenoBame TpaHCIOpPTa HEYTPOHA Y
reHepajHuM TreoMeTpujama. [IBOAMMEH3MOHA/IHa HEYTPOHCKA TPAHCIOPTHA jeJHAauuMHa pelleHa je
METOJIOM KapaKTEepUCTUKa, a TeHepaliHa TeoMeTpHja ce onucyje nomohy teopuje R—pynknumja. ¥ oBom
pajly IpHKas3aH je aJropuTaMm KOjU Cy ayTOPU Pa3BUIU 32 TPOAMMEH3UOHAJIHO pPElLIeHE TPAHCIOPTHE
jefHaunHe y KOMIZIEKCHUM reoMeTpujaMa HykjeapHux peakTopa. C 063upoM 1a AUPEKTHO NPOIINPEHE
ABOJAMMEH3UOHATHOT Y TPOAUMEH3MOHAIIHO pelliehe IOMOhy MeToe KapaKTEpPUCTUKA 3aXTeBa OTPOMHO
pauyyHapcKoO BpeMe Kao U BEJUKO 3ay3ehe MeMopujcKor mpocTopa, pa3BUjeHa je alTepHAaTUBHA METO/A.
Meropga ce 0asupa Ha KOMOWHALUjU ABOAMMEH3UOHAIHOT pEllekha METOAOM KapaKTEepUCTHKA U
jeMHOMMEH3UOHAHOT  pelllekha nomohy paudysmoHe wmerofe. IlmaHapHO pellleme METOAOM
KapaKTEPUCTUKA U aKCUjaIHO pelIemne AU(y3UOHOM METOJOM j€ IOBE3aHO KPO3 TPAaHCBEP3AJIHO OTULIAE
HeyTpoHa. OBa anTepHaTMBHA MeTofa je BajujgHa Koy mpopauyHa PWR m BWR c o63mpom pma je
XEeTEepOreHOCT y HOrJely TeOMETPHjCKE CTPYKTYpE U THIIAa TOPUBA JAJIEKO Matha Y aKCHjaTHOM IIPaBLy HETO
LITO je TO y INIAaHAaPHUM paBHUMa PEaKTOPCKOT je3rpa.

KapakTepuctuke u TadHOCT Hymepuukor nporpama AGENT mpukaszanu cy 3a ciiyuyaj MO3HATOT
6enumapk npobaema, C5G7. [IBOMUMEH3NOHATHO pelIekhe je aHAIu3upaHo y nopebewmy ca nosHaTum
nymepuukuM nporpamom DeCART. Anroputam koju je pa3BHUjeH 3a ypauyHaBame U Tpehe qumensuje
feTalbHO je ommcaH. [IpenuMuHapHU pe3ynTaTH Cy MOKAa3aHU Ha NMPUMEPY XETepOoreHe KOMOHMHaIuje
pa3NIuIUTUX TOPUBUX hennja.

Kmwyune peuu: meitiooa kapaxitiepucitiuka, xeitiepozeHu peakitiopu, peakitlopcku Z0pusu CKAoll,
benumapk upobaemu




