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The purpose of this paper is to demonstrate the use of the invariant embedding
method in a few model transport problems for which it is also possible to obtain an an-
alytical solution. The use of the method is demonstrated in three different areas. The
first is the calculation of the energy spectrum of sputtered particles from a scattering
medium without absorption, where the multiplication (particle cascade) is generated
by recoil production. Both constant and energy dependent cross-sections with a power
law dependence were treated. The second application concerns the calculation of the
path length distribution of reflected particles from a medium without multiplication.
This is a relatively novel application, since the embedding equations do not resolve the
depth variable. The third application concerns the demonstration that solutions in an
infinite medium and in a half-space are interrelated through embedding-like integral
equations, by the solution of which the flux reflected from a half-space can be recon-
structed from solutions in an infinite medium or vice versa. In all cases, the invariant
embedding method proved to be robust, fast, and monotonically converging to the ex-
act solutions.
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INTRODUCTION

Calculation of the flux reflected back from a
bounded region or from a half-space induced by an
incoming radiation is one of the basic tasks in trans-
port theory. The need for such calculations arises
frequently in nuclear engineering and related areas.
In core calculations, the problem of calculating the
exiting flux or current per unit incoming flux or cur-
rent is known as the albedo factor; albedo was used
in the past for approximating the effect of the reflec-
tor. Another case in core calculations is found in the
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application of the collision probability methods,
where transmission and reflection of the fluxes be-
tween various regions appear explicitly in the calcu-
lations.

The largest relevance of calculating the re-
flected/exiting flux is in the field of charged particle
transport, most notably atomic collision cascades
including sputtering and electron reflection spec-
troscopy. The latter is a powerful method of mate-
rial investigation, which consists of measuring the
energy loss of reflected electrons or ions from a sur-
face or an interface, by means of which one deter-
mines the material properties. In such cases, in or-
der to be able to unfold the material properties from
the measurements, i. e. to solve the inverse task, one
needs to solve the direct task from theory; i. e. to cal-
culate the energy loss characteristics of reflected
ions or electrons by transport theory calculations
for arbitrary materials.

Due to the nature of the problem (free surface
boundary conditions), standard methods of reactor
physics such as low-order P, methods do not pro-
vide a solution with acceptable accuracy. In general,
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the integral forms of the transport equation, when
solved by Neumann-series (collision number) ex-
pansion methods, are the most straightforward to
tackle the problem of the free boundary. The invari-
ant embedding equations are a special class of the
integral transport equations, amenable to collision
number expansion type iterative solutions [1-5].
They have, in addition, the advantage that they do
not resolve the depth parameter, and hence the cor-
responding integrals have to be performed in fewer
parameters. Despite the fact that the embedding
equations are non-linear, in certain boundary condi-
tion problems the embedding technique lends the
most effective way of numerical solutions. This
quality of the embedding technique has been dem-
onstrated in several papers recently, treating elec-
tron and positron backscattering from surfaces
[6-9].

In addition to the above, some other advanta-
geous properties of the embedding technique have
been discovered relatively recently. One of these is
the fact that with an ingenious trick, one can calcu-
late the distribution of the path length that particles
travel in the medium before being reflected back,
with the invariant embedding equations [6]. This is
slightly surprising, since the embedding technique
does not resolve the depth variable, but only works
with surface parameters. Another advantage comes
from the recognition that the fluxes crossing the free
surface of a semi-infinite medium and those cross-
ing an imaginary surface inside an infinite medium
can be related to each other by embedding-like inte-
gral equations [7]. Knowing the infinite medium
solutions (which are much easier to obtain due to
the absence of free surface boundary conditions),
one can calculate the reflected fluxes from a
half-space, or vice versa, by very fast converging iter-
ative methods. These relationships between the infi-
nite medium and bounded medium fluxes gave a
further substantial increase of the usefulness of in-
variant embedding techniques.

The subject of the paper is the demonstration
of the application of the invariant embedding
method in the areas described above. For this pur-
pose, we selected a very simple scattering model,
originally suggested by Fermi [10-11] and developed
further by Placzek, in which the particle directions
are restricted to a movement along a one-dimen-
sional straight line (“forward-backward scattering
model”). Such kernels are also called synthetic scat-
tering kernels. Both non-multiplying and multiply-
ing media can be treated. The advantage of the sim-
ple scattering model is that for these cases, nontrivial
analytic solutions can be obtained, and hence the cor-
rectness of the embedding solution can be verified.

Three different basic problem areas are treated in
this paper. The first is the calculation of the energy
spectrum of reflected (sputtered) particles from a mul-

tiplying medium when bombarded by a flux of
monoenergetic particles of the same type. The second
one concerns the calculation of the path length distri-
bution of reflected particles from a medium without
multiplication. Finally, we studied the technique of
getting infinite medium results from those for a
half-space by the method of solving the corresponding
embedding-like integral equations, as suggested by
Glazov [7]. The applicability of the embedding tech-
nique was tested by comparing the numerical solu-
tions to analytic ones. In all cases the invariant embed-
ding method proved to be robust, fast, and converged
monotonically to the exact solutions.

DERIVATION OF THE INVARIANT
EMBEDDING EQUATIONS

The detailed derivation of the invariant em-
bedding equations is found in standard books and
articles such as [1-5], hence we only give a very con-
cise description. The main quantity of interest is the
distribution of particles reflected/backscattered at
the surface of the homogeneous semi-infinite mate-
rial. Thus Y (E,,Q, E, Q)dEAQ denotes the
probability in the first order of dEC), that one parti-
cle will be emitted in the infinitesimal energy inter-
val (E, dE) and outgoing direction interval (€, dQ),
induced by one incoming particle with energy E
and an inward direction €. Due to the infinitesimal
character of the phase space volume considered, this
is equivalent with defining Y~ as the average number
of particles crossing the surface with coordinates
within (E, dE) and (Q, dQ). The quantity Y~ (and
likewise the transmitted flux, Y*, to be defined
later) will often be referred to as “fluxes” or “flux
densities” (reflected or transmitted fluxes); al-
though, to be correct, in the usual neutron transport
theory sense these are normal components of the
current vector, since they refer to the number of par-
ticles crossing the given surface.

We consider only atomic collisions with recoil
production but no fission, E, >E, and QO ‘A=
=p,>0and Q-fi=u < 0, whereiiis an inbound
normal vector at the surface; otherwise Y™ =0. This
description does not need to specify whether the
semi-infinite medium is filling the right or the left
half-space, since it is invariant to the reflection of the
system, a fact that will be made use of later. Irrespec-
tive of the absolute direction of the surface normal,
one has that Y (Eq, @), E, Q) =0if Q- Q> 0.

This circumstance will be important when we con-
sider the case of an infinite medium, where we will have to
consider impinging particles from two different
half-spaces. For similar reasons, we will have to introduce
the quantity Y (E,,, QO ,E, Q)dE _dﬁ (the “transmit-
ted flux™) which will be non-zero for €, - € > 0. Trivially;
for a semi-infinite medium, Y would be equal to the in-
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coming source particle and therefore has no significance; ECy
it will only be non-trivial for the case of an infinite me-
dium, where there will be a returning flux to the surface Y (E, Y, E,0)dE' QY dE"dQY" (1)

where the initial particle was started. This will be discussed
in subsection on the analytical calculation in an infinite
medium.

The derivation of the invariant embedding
equation is based on considering an infinitesimal
layer of thickness dz at the surface, in which the prob-
ability of multiple collisions can be neglected. Then
the probability of backscattering can be formulated
as the sum of the probabilities of five different mutu-
ally exclusive possible events having at most one col-
lision in the layer either on the entry or on the leave of
the particle. These possibilities can be listed as fol-
lows (see also fig. 1):

(1) No interaction in the layer on entering, re-
flection in the medium, no interaction in the layer on
leaving;

(2) Interaction on entering with scattering out-
wards (backscattering from the layer);

(3) Interaction on entering with scattering in-
wards, reflection in the medium, no interaction in
the layer on leaving;

(4) No interaction on entering, reflection in the
material, interaction in the layer with scattering out-
wards;

(5) No interaction on entering, reflection in the
medium, interaction on leaving with backscattering
to the medium, reflection in the material, no interac-
tion in the layer on leaving.

Adding up the expressions corresponding to
the above terms, one arrives at the equation

where %(F) is the total macroscopic cross-section,

¢(E) is the number of secondaries per collision, and
f(Eg, Qy — E, Q),), is the normalized scattering
function. Smce for simplicity, only cases without
absorption will be considered (with one exception
in section on the path length distribution), ¢ will be
unity for a non-multiplying medium (i. e. for elec-
tron transport), and for the case of recoil produc-
tion, we will have ¢ = 2.

It is worth noting that due to the infinite ex-
tension of the semi-infinite material both with
and without the infinitesimal layer (hence the
term “invariant embedding”), the backscattering
function Y (E,, Q, E, Q) is the same on both
sides of eq. (1).

Using the following notation for abbreviation

M'C(Eo)'f(E()aéo - E,Q)=

Ho R R
EG(E(J, S_ZO’ E, Q)
and
[[G(Ey,$, E, Q)Y (E,Q, E,Q)dE'dQY =
=GRY"~

the above general invariant embedding eq. (1) can
be compactly written as
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This equation can be resolved into a set of iter-
ative equations for the n-times collided particles, ex-
pressed explicitly in terms of integrals containing
only lower order terms. That is, one has

Y~ (Ey, QO’ E, é) = ZYn_(EO’ QO’ E, é)
n=1
where Y, stands for the reflected flux of exactly
n-times collided particles. It is easily confirmed that
the first term is given by

_ T =
Yl(E(]’Q(),E,Q):LZ(ZfO)+Z(2E)J |
(

'G(EO, E%,E,Q) (3)
while the equations for the higher order terms are
given as

- T =
Y,;(EO,QO’ E’ Q) =|‘Z(Z;E0)+ Z(ZLE)J '
0

n-2
{G@Y,;_1 +Y, , ®G+ > Y, ®G®Yn‘_m_1} (4)

m=1

The right hand side of the eq. (4) above con-
tains only terms of order n — 1 or lower. This means
that starting with n = 2, and using the Y| ofeq. (3)
on the right hand side, Y, can be calculated by a
simple quadrature over the known functions, after
which Y] and Y, can be used on the right hand side
to calculate Y3, and so on to the higher orders. The
procedure can be terminated when inclusion of
more terms yields a smaller contribution than a
pre-set error limit. This iterative scheme will be
used throughout the paper for the numerical work.

THE SCATTERING MODEL

In this paper only cases when the bombarding
particle is of the same type as the host material will be
considered. This means that only scattering between
particles of equal mass occurs. All calculations in this
paper will be made by using a simple so called syn-
thetic kernel, in which transport occurs along a
straight line such that Q, = cos 0 = y can only take
values +1. A particle on collision can either continue
or reverse, and in the case of recoil production, the
same is valid to the recoil, independently on the direc-

tion in which the projectile leaves the collision site.
This means that the conservation of energy and im-
pulse is uncoupled, hence they are not conserved in
the individual collisions, but only in an average over a
large number of collisions. This corresponds to the
“forward-backward” scattering model by Fermi. In
the examples of the following sections this restriction
is used everywhere in order to be able to compare the
invariant embedding solutions with analytical calcula-
tions. In regard of the energy transfer, hard sphere
scattering is also assumed, either with constant or
power-law cross-sections.

Although the most obvious and customary way
of accounting for the discrete available scattering angles
is a Dirac-delta function representation such as in [11],
this would lead to complications in the embedded for-
malism because there is one term where the scattering
function stands alone, i e. not under an integral sign.
Hence it is simpler if the angular dependence of the
scattering function is represented by Kronecker-delta
functions, and the integrals with respect to the angular
variable are replaced by summations.

According to the above, the normalized scat-
tering function with hard sphere scattering between
equal masses is given as

f(Ey,Qy = E, Q) > f(Ey, uy — E, p) =

1
:E'wue,u +5#0s—/1) (5)
The case of no recoil production is then de-
scribed by ¢ = 1, and that of recoil production with
¢ = 2. Using the above simplification, the embed-

ding equation is written as:

Y_(E()a ,Llo, E’ ,U) =

6 +5p0,_#)+

(2B 2B)| [2(E) <
ny 2E, "

T

+’}0 3 S(Ey) ¢

Eu=+1 Ho 2E,
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However, we need also to take into account
that Y™ (E', ¢', E, p) is only non-zero if i’ > Oand
1< 0aswell as the fact that we can substitute i, = 1
and 4 = —1. Also, turning to constant cross-sections
means that the cross-sections disappear from the
equation, which in physical terms means that the re-
flected flux is invariant to a rescaling of the depth
variable to the optical path. This will reduce the em-
bedding equation to the final form

E,

_ c c P
Y (E,, E)=—S—+-C [Y(E,E)E +
(B B)= g |V (LB
Eyy - "
Y EE g

r  A4E"

Eyv - m\ E’
+cj7Y (Ey. E) [Y~(E', E)dE'dE"
4E"
E E

where

Yi(E(]’ E) EY?(EO’ Mo =+1E, u =-1)

SPUTTERING SPECTRUM FROM A
SEMI-INFINITE MEDIUM

Constant cross-sections
Analytical solution

In the case of sputtering in an atomic collision
cascade, recoil production is assumed on each scat-
tering event; hence one has ¢ = 2. Further, one can
simplify the equations by rescaling the depth variable
into units of the optical path (X' = 1), which will have
no influence on the sputtering spectrum at the sur-
tace. The ordinary transport equation reads as

oY(z, 1L E
u (z, 1 E)

+Y(z, 1, E) =
oz

Ey
] %mz’ wE)+Y (2~ ENE"  (6)
E

with the boundary condition
Y(0,1, E)=6(E-E)

which corresponds to one incoming particle on the
surface with energy E, and direction u = +1. The
searched quantity is Y(0, -1, E), i. e. the outgoing
flux at the surface. Rewriting the transport eq. (6)
into the lethargy variable u = In(E(/E) gives

o¥(z pu)
. 0z
[Y(z, pu')+Y(z,~u')]du' (7)

+Y(z, u)=

(=R e 1

with the boundary condition in the form

S(u) (8)
0
The solution of this equation has been known
for long [12-13] and it is given for the sputtered
spectrum per unit energy interval as

Y(0, L,u)=

eu

Y(0.-Lw) =Y (0.u)=

Liw) )
ot

where I is the modified Bessel function of the first
order. This solution diverges with increasing leth-
argy, which expresses the fact that without a cut-oft
energy, or energy dissipation by binding energy, the
number of recoils generated by a primary energetic
particle diverges when the energy of the recoils
tends to zero.

Invariant embedding solution

Using the iterative scheme described in eqs. (3)
and (4), a numerical solution based on the invariant
embedding technique can be obtained and the solu-
tion can be compared to the analytical solution. The
calculations were performed by using a Matlab code.
The results obtained with the use of the algorithm are
shown in fig. 2. One can see that the iterations ap-
proach the analytical solution after some ten to fif-
teen iterations, as seen in fig. 2, where the first ten it-
erations are shown. It is also seen that the higher the
lethargy or the Ey/E ratio, the more iterations are
necessary for convergence, which is a consequence of
the fact that the invariant embedding method uses a
collision number expansion in the iterations, and the
collision number increases with increasing lethargy.

Power law cross-sections

In the invariant embedding method the use of
constant cross-sections can easily be abandoned

T : :
= Analytical solution
9 | |— Invariant embedding

Order of iterations

\ . N \ | L . |
1 2 3 4 5 6 7 8 9 10
Incoming energy/outgoing energy

Figure 2. Sputtering spectrum with constant
cross-sections
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without any practical increase of difficulty of the so-
lutions. This is not true for the analytic solutions of
the ordinary transport equation which cannot be
solved in a compact closed form for energy depend-
ent cross-sections. For illustration, we show here
the invariant embedding solutions for so called
power law cross sections, commonly used in the
theory of atomic collisions. These are given in the
form [14]

X(E)=CE™ (10)
where C is an arbitrary constant and g lies between

zero and unity. For that case the invariant embed-
ding equation — eq. (2), takes the form

_ 1 ~(g+1)
Y (E,E,)= T(E@D 4
R
+E[() ? Y (E', E,)dE'+
EZ

E,

+[ E"4DY (E,, E")dE" +

E,
E E"
+J' Eﬂf(qul)Yf(El’E(I)J'Yf(El’Ez)dEldEu)]
£ E, (11)

Here, E; stands for the energy of the incoming
particle and E, for its post-collisional (outgoing)
energy.

The quantitative solutions are shown in fig.
3. Since no analytical solutions are available, we
cannot compare the embedding solutions with
the exact results. In this case, we can only make a
quantitative comparison with Monte-Carlo cal-
culations of the total sputtering yield, published
by Conrad and Urbassek [14].The results dis-
played in fig. 3 show that the sputtering spectra
and hence also the integrals of the sputtering spec-
tra (sputtering yields) decrease monotonically
and uniformly in E,/E with the increasing value

7q:()
F|l---g=05
og=1

Yield
©

Incoming energy/outgoing energy

Figure 3. Sputtering spectrum from three different
power law cross-sections ¥ = CE™

ofg.Infig. 3thecasesq = 0,9 = 0.5,andg = 1 are
shown. When g = 0, the solution is identical with
the solution for the energy independent cross-sec-
tions, as it should be. The above trends are in ac-
cordance with the findings published in [14],
where the same tendency was found for the sput-
tering yield, as a function of the power law expo-
nent q. Compared with the Monte-Carlo method
used in [14] for the same task, the invariant em-
bedding method is much faster for the same accu-
racy than the Monte-Carlo calculations.

PATH LENGTH DISTRIBUTION

The path length distribution is interesting for
the reflection of injected particles from a non-multi-
plying medium, such as the electron reflection from
solids. The distribution of the particles with respect
to the total path length traveled in an energy-inde-
pendent description has been frequently used to cal-
culate the energy loss of the reflected electrons just
below the elastic peak, by convoluting the path
length distribution with the energy loss function [6].

Analytical calculation

Since in this (and only this) section we con-
sider an energy-independent case (one-speed de-
scription), notations on energy will be omitted. The
scattering kernel thus has the form

!
f(/l—>/l ):E(atsy,u’+b5y,—y’) (12)

where a and b describe the forward and backward
scattering probabilities. Here, and only in this sec-
tion, we maintain the possibility of anisotropic scat-
tering which prevails when a # b, and the possibility
of absorption, whena + b < 1. Further, since there is
no recoil production, we shall have ¢ = 1 in the
non-absorbing case, and allow also for ¢ < 1 to ac-
count for absorption.

Although the path length variable is usually
not operated on in the ordinary transport equation,
one can make use of the fact that in one-speed case
with a constant particle speed v, the path length
variable R is equal to R = v¢ and hence the time de-
pendent transport equation can be used for calcula-
tion of the dependence of the reflected flux on R.
The modified transport equation reads as [15]

0Y(z, 1, R) oY(z, u, R)
+ +Y(z,,, R) =
R e (z,15 R)

=aY(z,u, R)+bY(z,—1, R)+

+0(2) 8(R) 5,11 (13)
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where the last term on the right hand side represents
the source particle. Since the source particle is ex-
plicitly written in the equation, it does not show up
in the boundary conditions:

Y(z=0,u=+1,R)=0 (14)
Y(z,u=1,R=0)=0 (15)

whereas the reflected flux Y(z = 0, 4 = -1, R) is un-
known and has to be determined from the solution.
This problem can also be solved in a closed analyti-
cal form, and the solution reads as
(a-1)R

O(R)=Y (0,R)=¢

I,(bR)  (16)

which, when there is no absorption present (i. e.
whena + b = 1), reduces to

e—bR

Y (O,R)= I,(bR) (17)
This is the analytical solution to which we shall
compare the invariant embedding results.

Path length distribution
using invariant embedding

In a recent publication, by finding an analogy
between the generating function of the full path
length distribution form of the embedding equa-
tion and the ordinary embedding one, Vicanek [6]
has constructed an embedding solution to the path
length distribution in a very ingenious way. The es-
sence of the method is the following (for details, re-
ter to [6]). With the usual arguments, one can derive
an embedding-like equation for the path length dis-
tribution Q(R) of eq. (16) as

[;+;J(£+1)Q(R):

=5(R)G+GRQO(R)+O(R)®G+
+[ O(R"GO(R-R')dR’

Then the solution of the above equation can
be given as

qm=§n@Am (18)
where n-1
_R -R
Qn(R)_(n—l)!e (19)

The O, (R) are the path length distributions of
the particles that have suffered n elastic collisions

before leaving the medium. The quantities Y,,~, on
the other hand, are calculated as the collision num-
ber expansion coefficients of the total reflected flux
Y. This latter is defined by the energy independent
form of the embedding equation with the for-
ward-backward scattering kernel in the form

(Y7)>=2Y " +1=0 (20)

where Y™ =Y (uy,4) =Y (+1,-1). This equation
has the trivial solution

Y™ =1; hence iYn_ =1
n=1

expressing the fact that in a purely scattering infinite
half-space, the reflected flux is equal to the incoming
flux, which is unity. However, for the invariant em-
bedding type path length distribution we need the
expansion coefficients Y, i. e. the contributions of
the z-times collided particles to the total reflection
coefticient. These can easily be determined recur-
sively in the way described in connection with eq.
(4), in this case purely through algebraic summa-
tions, without integration. Knowing the Y, the
path length distribution can easily be calculated via
egs. (18) and (19).

The quantitative results from the invariant em-
bedding calculations were compared with the analyt-
ical results. Three cases were selected for the compar-
ison of the analytical and invariant embedding
solutions, with varying degrees of absorption: no ab-
sorption, weak absorption, and strong absorption
(fig. 4). It can be seen in the fig. 4 that, especially
when absorption is present, only a few of these coef-
ficients are needed for convergence, and as few as the
first two Y, and Y, are sufficient for the case of
strong absorption. Without absorption, more coefi-
cients are needed for convergence, hence in fig. 4a
and fig. 4b only every third iteration is shown for
clarity. One can note the decrease in number of coef-
ficients with the increase of absorption. The accuracy
obtained in the individual iterations for the three
cases are shown in tabs. 1-3 below.

Table 1. No absorption

Path length R | Analytical value|Iterations| Relative deviation
1 0.1564 6 9.6907-10~°
2 0.1040 9 3.5542.10°5
3 0.0730 11 4.8046:10-°
4 0.0538 13 4.8975-10-5
5 0.0413 15 4.3560-10-5
6 0.0328 17 3.5817-10°5
7 0.0268 18 8.3710-10-5
8 0.0223 20 6.0753-10~5
9 0.0190 22 4.3373.10°5
10 0.0164 23 7.9678-1075
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Figure 4 Path length distributions in three cases with
varying degree of absorption: (a) no absorption, (b)
week absorption, and (c) strong absorption

Table 2. Moderate absorption, a = b = 4/10

Path length R | Analytical value|Iterations| Relative deviation
1 0.1120 6 2.7663-10°
2 0.0652 8 3.8659-10-5
3 0.0394 10 3.0571-10-5
4 0.0246 11 8.6933.10-5
5 0.0158 13 4.8975.10-5
6 0.0105 14 9.4659-1075
7 0.0071 16 4.9523.10-5
8 0.0049 17 8.0502-10-5
9 0.0034 19 4.1214-1075
10 0.0024 20 6.0753-1075

Table 3. Strong absorption, a = b = 1/10

Path length R | Analytical value [Iterations| Relative deviation
1 0.0204 4 1.0204-10-5
2 0.0083 5 9.4707-10-6
3 0.0034 5 6.6541-10-5
4 0.0014 6 2.7663-1075
5 5.7299-10~% 6 9.6907-10-5
6 2.3614-104 7 3.7253-.10-5
7 9.7555.10-5 7 9.9949.10-5
8 4.0396-10-5 8 3.8659-10-5
9 1.6766-10-5 8 8.9882-10-5
10 6.9746-10-5 9 3.5542.10-5

RELATIONSHIP BETWEEN THE
SOLUTIONS IN A HALF-SPACE
AND IN AN INFINITE MEDIUM

It is possible to reconstruct the solution in a
half-space medium from the solution in an infinite
medium and vice versa [7]. The reflection problem in
an infinite medium is defined by the current of parti-
cles leaving an imaginary surface at z = 0 into the
negative direction, induced by one incoming particle
starting at the surface into the positive z-direction. In
this case, the reflected flux is not only due to recoiled
particles generated exclusively by the initial particle,
since now the particles emitted can be back-scattered
from the other half-space and reenter the domain z
>0, thereby creating more recoils which will add to
the reflected flux into the half-space z < 0.

In the demonstration of the method, we shall
now reconstruct the infinite-medium solution from
the half-space one, since the latter was already deter-
mined in the previous section. However, to check
the correctness of the reconstruction procedure,
here we need also an analytical result with which the
invariant embedding result will be checked.

Analytical calculation
in an infinite medium

The starting equation is identical with that in
the semi-infinite medium, eq. (7):

oY(z, uu u
u%+Y(z,,Lgu) =I[Y(z, Wu)+
0

+Y(z,—, u)]du+%u)5y’+]5(z) (21)
0

The difference is that now the solution is
sought for —eo < z < o0; also, the source particle was
included into the equation instead of treating it as
an interface condition. Indeed, in an infinite me-
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dium, there will be more particles crossing the sur-
face z = 0 into the positive direction than just the
source particle. The only boundary condition we
have now is that

Y(z, p,u) < oo for z — £
The task is to calculate the quantity
Y. (w)=Y(0,u=-1,u)

which is the probability density (in energy units) of
the particle crossing the surface atz = 0 in an infinite
medium, with lethargy u, into the opposite direc-
tion as that of the initial starting particle which in-
duced the cascade, and which was injected at the
same surface.

This problem can also be solved analytically.
The solution for the total reflected flux atz = O inan
infinite medium is obtained as

e I,(u)
2E,

The solution in a semi-infinite medium is
known from before — eq. (9), as

eI (u)
Eyu

The asymptotic properties of Y., and Yj,for
small u values are the same:

Y, (u)= (22)

Yipp(u) = (23)

- 1
lim Y, =—— 24
. |
lim Y, =— (25)
u—0* 2E0

This means that for small lethargies (incoming
energy and outgoing energy are close to each other)
the functions for the semi-infinite and the infinite
medium are identical. This is understandable, since
there is a very small probability for a sputtered parti-
cle with small lethargy to have crossed the planez = 0
more than once in the infinite medium case. The as-
ymptotic properties for large lethargies are, on the
other hand, quite different:

2u
. — e
IimY;, =———+——+0(1/u
W= o O(1/u)
eZu
imY. =——% — +o(1/u)

U= 2E ~2nu

The sputtering spectrum diverges faster for an
infinite medium than for the semi-infinite one. This
can be physically understood, since while a particle
that leaves the semi-infinite medium never returns,

in the infinite medium it can return and induce fur-
ther scattering reactions and further sputtered
particles into the left half-space.

Relationship between the semi-infinite
and infinite medium solutions

Consider two cases in parallel: a homogenous
semi-infinite medium for z > 0, and an infinite me-
dium of the same material properties. Let us induce
cascades in both media by one impinging particle
into the positive z direction at z = 0 and follow the
fluxes that cross the surface atz = 0. Then let us use
the following notations:

- Y(Ey, E) - the reflected flux in a semi-infi-
nite medium,

- Y (Ey, E)-all outgoing passages in the infi-
nite medium (reflected flux), and

- Y.I(E,, E)-allingoing passages except the ini-
tial particle in the infinite medium (“transmit-

ted” flux).

Here, Y_(E,, E) is the total reflected flux
through the surface in a direction that is opposite to
that of the incoming particle, whereas Y. (E ), E)is
the total flux crossing the surface into the same di-
rection as the incoming particle, but excluding the
initial particle. Due to the symmetry of the infinite
medium, these two quantities will be the same irre-
spective of in which direction the original particle
starts, as long as the signs are meant with respect to
the direction of the source particle.

It follows then that Y (E ), E) can be expressed
as the sum over the flux that does not return and an in-
tegral over the transmitted flux in an infinite medium

as
Y. (Eg, E)=Y1)5(Eo, E)+

+1”Y;<EO,E'M72<E', EXE  (2)
Likewise, for Y.[ (E, E) one will have
Ey
Y (Ey, E)= {) Y ,(Ey, E)- Y. (E,E)dE"  (27)
Introducing the following notation
AxB=[ A(E,, E")B(E',E)dE'  (28)
egs. (26) and (27) can be written as
Yo =Y+ Y Y] (29)
YD =YipxYo (30)

Define now the symmetrised and antisymmet-
rised fluxes as
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S(Ey,E)=Y(Ey, E)+Y (E, E) (31)

A(Ey, E) =Y, (E,, E)—Y;(Eo’ E) (32)

where § describes all passages through z = 0 (total
or scalar flux in reactor physics terminology), except
the initial particle and 4 describes the net current
through the surface, except the initial particle.
Inserting egs. (26) and (27) into eqs. (31) and
(32) the following relationships are readily derived:

S=Yip +Yp*S (33)

A=Yy =Yp* A (34)
Equations (31) and (32) give

v =224 (35)

From egs. (33) and (34) the solutions to S and
A can be expressed in the form of a Neumann series
expansion that contains nothing more than
integrals over Y7 ,:

S=Yn +Yox Y, + Y * Y p* Y, +..(30)
A=Y, =YY + Y * Y% Y 5—..(37)

Combining eqs. (35), (36) and (37) gives the
solution for the infinite medium as

1 _ _ _ _
Y, :E(Yl/Z +Y* Y Yy +

Y # Y *x Yk Y h* Y p+.) (38)

In many cases, the infinite medium solution is
easier to calculate, since the associated boundary
conditions (no divergence at infinity) are much sim-
pler than the free surface boundary conditions of a
half-space. Using the same procedure but express-
ing Y}, instead of Y, one can just as easily express
the half-space solutions as functions of the infinite
medium solutions in Neumann series expansions
similar to eq. (38) as iterated integrals over Y, .

The method of reconstructing the solutions in
an infinite medium from those in a half-space were
also tested quantitatively and checked up with the an-
alytical solutions in the infinite medium. Equation
(38) was calculated in iterations as follows:

1

Yi.= > Yi

I
Y ZE(Yuz +Y7, " Y0 " Yi,)
_ 1, .- _ _ _
Yi. ZE(Yl/Z +Y Y T Y, +
+Y, " Y * Y * Y, FY,)

and so forth.

— Analytical solution

— Invariant embadding

1 I
o] 10 20 30 40 50 60 70 BD an 100
Incaming energy/Ontgoing enargy

Figure 5. Calculating the solutions in an infinite
medium from those in a half space

As fig. 5 shows, the solution converges very
rapidly to the analytical result. It is not necessary to
include more than three or four terms. The rapid
convergence is due to the fact that the involved in-
tegral egs. (26) and (27) are linear equations of the
Fredholm type in contrast to the ordinary embed-
ding equations which are non-linear and hence
possess less advantageous convergence properties.

CONCLUSIONS

The main purpose of this paper was to dem-
onstrate the application of the invariant embed-
ding method in simple model cases where the tech-
nique is transparent and can be compared to
known analytical solutions. Hence we believe that
the cases shown here will help those who could
have use of this powerful method in their own ap-
plications to get a hands-on training with the algo-
rithm. As the simple examples show, the applica-
tion of the embedding method is straightforward
and it has good and stable convergence properties.
Needless to say, the technique is just as straightfor-
ward to be applied to the real energy- and angle-de-
pendent cross-sections and hence to realistic prob-
lems. Some of the potentials of this so far less
favoured or recognized method will be described
in a coming review article where the potentials of
obtaining solutions through the infinite medium
reformulation of the embedding equations will
also be demonstrated [16].
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Mamun BAJIBEPT, Umpe ITAKUT

CTAHJAPIN30BABE METOJE UHBAPUJAHTHOI' YJIATABA ITIOCPEICTBOM
AHA/IMTNYKUX PENIEIbA MOJEJOBAHOI TPAHCIIOPTA

Iurm paga je ma mpukaxe ynoTpeOy METOJie MHBApHjaHTHOT yjarama Ha HEKOJIMKO IpHMepa
MOJIEJIOBaHOI' TPAHCIIOPTa 3a Koje je Takobe Moryhe goOuTH aHanuTH4YKa penlewa. Kopuithewe meTone
NPHUKA3aHO je y TpH pa3nuauTe obiacti. [IpBa je mpopadyH eHepreTCKOr CHeKTpa paclpalleHnX YeCTUIA U3
pacejaBajyhe cpemune 6e3 amcopmiyje y KOjoj je MyJNTHIUTAKaNuja (IeCTHYHAa KacKaja) HacTraja yclen
y3MaKJIMX dyecTura. PasmaTpanu cy npecenu 3a cyfap He3aBUCHHU Off EHEpruje, U eHepPreTCKU 3aBUCHU Y BUAY
crernere yHkiyje. [Ipyra npuMeHa Tu4e ce mpopavyHa pacropese npebeHor myTa dyectuna peieKTOBaHUX
o HeyMHOXaBajyhe cpenure. OBO je pelnaTuBHO HeOOWYHA IIPAIMEHA, YTOJIHUKO IITO je[HAYNHE yIarama He
Jiajy pellerme NpoMeHibuBe 110 Ayounn. Tpeha npuMena nmokasyje fja cy pemerma y 66CKOHAYHO]j CPEfIMHE U Y
MOJIyIIpocTopy MehycoOHO MoBe3aHa MOCPECTBOM MHTETPATHUX jeTHAUYNHA CTUYHUX MHBAPUjaHTHAM, UMM
ce pelaBameM peIeKTOBaHA (PIIYKC Off HOIYIPOCTOPa MOXKE PEKOHCTPYHCATH U3 PEIIeHha 32 OECKOHAYHY
CpefuHy, 1 OOpHYTO. Y CBUM CIIy4ajeBEMa, Op30M H MOHOTOHOM KOHBEPI'EHI[HjOM Ka €I3aKTHOM pelIeny
notepheHa je moy3aHoCT MeTOo/ie MHBAPHjaHTHOT yJlarama.

Kwyune peuu: meiliooa uneapujaHitino? yaazarea, CUHilleiiuiHa pyHKyuja pacejarba, cilekiap
paciipauieHux vectiuya, paciiooeaa tipebeno? uyiia



