V. M. Pavlovych, V. M. Khotyayintsev, O. M. Khotyayintseva: The Physical Basis of the Fission Wave Reactor 3

THE PHYSICAL BASIS OF THE FISSION WAVE REACTOR
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The main idea of slow nuclear fission wave reactor is discussed and short review of the
existing works is also presented. The aim of this paper is to clarify the physics of pro-
cesses, which define the stationary wave of nuclear burning, and to develop the ap-
proaches determining the wave parameters. It is shown that the diffusion equation for
fluence can be used to describe the stationary and non-stationary processes in the nu-
clear fission wave. Two conditions of stationary wave existence are first formulated in
the paper. The rule of determination of wave velocity as the eigenvalue of boundary

problem is also formulated.
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INTRODUCTION

The idea of creating a fast reactor which could,
due to slow fission wave propagation, operate over a
long period of time without the participation of any
staff was first suggested by L. P. Feoktistov [1]. The
idea is simple and beautiful. Let us imagine a cylinder
of pure fertile material such as 23U or 2*2Th whose
butt-end is irradiated by neutrons. The fertile material
is transmuted into fissile material in the superficial re-
gion, determined by the path lengths of the neutrons,
according to the well known chains of transformations
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When the critical concentration of fissile mate-
rial is reached, the self-sustained chain reaction begins
and neutrons are supplied to the neighbouring region
where the fissile material is accumulated, and so on.
Thus the slow wave of nuclear fission propagates
through the fertile material. Such a wave is self-regu-
lated, because any fluctuation exceeding the critical
concentration of fissile material should burn up during
the neutron’s lifetime, while the new fissile material is
formatted in times compared with the time of precur-
sor B-decay, not simultaneously.

One important condition was established by
Feoktistov: the critical concentration of fissile mate-
rial should be lower than its equilibrium concentration
(which is determined as asymptotic at t—>co solution of
the kinetic equation for the concentration of fissile ma-
terial). So, the propagation of the nuclear fission wave,
in front of which the uranium captures the neutrons
and turns into plutonium, is possible in the 28U me-
dium. This is a typical auto-wave regime which is ex-
tensively studied in non-linear physics.

Later E. Teller [2] has proposed a fast reactor
with a thorium cycle which operates in a self-aligning
regime, ata depth of 100 m underground, over a period
of 30 years, without human interference. Actually,
Teller has used Feoktistov’s idea, applied to the tho-
rium cycle.

In the works by Goldin et al. [3, 4], the
self-aligning regime of a fast reactor was studied on
the basis of the differential equation system which rep-
resents the cylindrical reactor with an inner critical
core and an outer 238U blanket. Such a reactor can op-
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erate without external control over a long period of
time, but the auto-wave regime does not appear and re-
actor power first slowly increases and then decays af-
ter a year of operation. In short, this reactor operates in
a non-steady-state regime.

The steady-state operation of slow fission waves
was studied by several groups. Sekimoto et al. [5-7]
performed a numerical modeling of different types of
fast reactors in a many group diffusion approximation
which took into account spatial and temperature ef-
fects, but details of these calculations were not pub-
lished. The authors named the steady-state fission
auto-wave strategy for the development of fast reac-
tors CANDLE. It was also shown in [8, 9] that, with
the help of numerical modeling, in a two-zone homo-
geneous reactor with metallic U-Pu fuel, Na coolant
and Fe as construction material, the wave regime of
nuclear burning, which can exist over a long period of
time, can be obtained (flat, one-dimensional model).
Rusov et al. [10] suggested that such a reactor could
operate inside the Earth, at the border between the
solid and liquid core; they gave physical arguments for
the existence of a wave reactor and, on the basis of 3-D
numerical modeling, presented evaluations of the
power of such an Earth reactor.

In our opinion, this type of numerical calcula-
tions do not reflect the physical peculiarities of wave
reactors and, in any case, are not to be considered a
proof of the existence of stable waves. This is due to
the fact that the principal idea of the wave reactor’s
self-aligning is lost in such calculations: fluctuation
excesses of plutonium concentration over the critical
value burn up over a neutron’s lifetime (without taking
the delayed neutrons into consideration) or, at least, in
comparison to the reactor’s period (taking the delayed
neutrons into account), but new plutonium formats ap-
proximately three days later, not simultaneously. This
means that numerical calculations should be per-
formed with a time mesh of the order of 10°-1077 s,
without delayed neutrons and in time steps of ~0.1-1s,
taking the delayed neutrons into account. At the same
time, most numerical calculations were performed
with time steps of the order of days (in studies where
this was indicated) because of the necessity to calcu-
late the long-term processes of wave formation and
propagation over the whole reactor. But the calcula-
tion with such time steps leads to a seeming increase in
the multiplication factor of up to 1.1-1.2 in, depending
on the time step, while reactor runaway is not ob-
served. These mean that such calculations have no
physical sense.

It is interesting to note that, at first glance, taking
into account the delayed neutrons is not crucial for the
formation of the nuclear burning wave. But it may play
an important role in its numerical calculation, since the
adding of one or several equations to the mathematical
model cannot be compared to the several order de-
crease in the necessity time step. It is clear that the cal-

culation during a reactor lifetime at small time steps of
the neutron lifetime order is impossible for existing
computers (excluding supercomputers and interna-
tional grids).

Analytical studies of the processes of wave for-
mation are based on simplified equations with follow-
ing numerical evaluations. In particular, in the interest-
ing works by Van Damm [11,12] (see also [13] where
on the basis of Van Damm’s model the account for a
backling was performed), auto-wave ignition and for-
mation in the one-dimensional system on the basis of
the one-group diffusion equation with non-linear reac-
tivity feedback and model dependence of the multipli-
cation factor on fluence was studied. This dependence,
approximately, in an implicit form, accounts for the ki-
netic burning equations, in particular the accumulation
of plutonium. As aresult, the steady-state solution in the
form of a diffusion solitone is obtained and, also, the
process of auto-wave ignition is numerically studied.

In our previous work [14], we have studied the
properties of the stationary neutron fission wave de-
pending on neutron-nuclei system parameters in a
model close to the Feoktistov’s one. We have shown
that the description of the system simplifies in the
cases of fast and slow waves. The critical concentra-
tion of plutonium was considered as a given constant,
although in reality it changes during wave propaga-
tion. In this work we excluded this drawback also tak-
ing into account other nuclides which are formed as a
result of wave propagation. The real control parameter
of the system — the external absorber concentration —
is also introduced. Changing it, one can obtain the de-
sired velocity of wave propagation.

NUCLEAR BURNING WAVE IN THE
ONE-DIMENSIONAL APPROXIMATION:
FLUENCE DIFFUSION EQUATION

The usual breeder reactor (BR) and nuclear fis-
sion wave reactor (NFWR) are basically systems of
interacting neutrons and nuclei. Nuclides 2**U and
232Th can capture neutrons and transform them to
239Py and 2*3U, correspondingly. The characteristic
process for both reactor types is the transformation of
a fertile nuclide to a fissile nuclide due to neutron
capture. Therefore, the theory of BR and NFWR
should be formulated by means of similar equations.
These are differential equations which describe the
time variation of nuclide concentration due to nuclide
transformation chains (burn up equations) and the
neutron transport equation taking into account their
spatial migration, energy change, and interaction
with nuclei.

The simplest approach uses the one-group ap-
proximation for neutron energy distribution and diffu-
sion approximation for spatial transport. Such an
equation has the form
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0 —vpag g (1)

where ¢ = vn is the neutron flux density, v — the mean
neutron velocity, n — the neutron concentration, D — the
diffusion coefficient, and g — the neutron generation
function which is the linear function of nuclei concen-
trations ;. Equation (1) is the balance equation taking
into account the change in the number of neutrons in the
elementary volume due to diffusion, absorption by nu-
clei, and creation by fission. We did not take into ac-
count the delayed neutrons, deeming them insufficient
in the wave propagation process.

The specificity of the model is defined by the
level of detail of the nucleus kinetic model and the ex-
plicit form of neutron generation function g(%,). First
of all, we shall consider the general consequences of
eq. (1) and then we shall show the effect of the model
detailes.

It is necessary to note that there are stationary
and non-stationary processes concerning NFWR. The
steady-state regime for a fission wave reactor is the re-
gime of stationary wave propagation, and the ignition
and formation of stationary waves are sufficiently
non-stationary processes. Let us show that one can use
the diffusion equation for fluence to describe both sta-
tionary and non-stationary processes in NFWR. This
opens new possibilities for analytical studies of the
system.

Let us introduce the fluence field as the time in-
tegral of the neutron flux density field

y(i0) = [§(F.0)dr 2)

where 7, is the initial moment of time. Equation (2) is
equivalent to the following differential equation with
zero initial condition

W pE0). w(Eatg)=0 3)
ot
In general, let us include into the right hand side
of eq. (1) the term s(7,¢) describing the external neu-
tron source. Then, integrating eq. (1) in time, we ob-
tain the equation for fluence which also has the form of
the diffusion equation

i—wszA'P+G+S(F,t) (4)
t

Here S is the fluence source which also depends
on the initial value of neutron flux density

S = [s(F.0)dr+9(Fot,) (5)

lo

And, let us name value G, fluence generation
function

ch{gﬁmW ©6)

It is defined by the full number of neutrons cre-
ated in the elementary volume during the entire pro-
cess, from ¢, to ¢, taking into account absorption. Equa-
tion (6) should be understand as an integral along the
system trajectory in the space of variables (N ,p) for
the given point of volume. For NFWR, such a trajec-
tory is fully defined by the kinetic equation for nuclear
concentration with initial conditions, if the depend-
ence y on time is definite in the given point. Besides

96 _
ot

As itis shown in the following two sections, one
can express the neutron number increment through the
increment of the number of nuclei which take part or
are created in corresponding processes. Thus, G is the
function of initial nuclei concentrations, final concen-
trations, and fluence, and it does not depend on the tra-
jectory ofthe transition from the initial to the final state

g¢ )

G=G(N,,N,y) (8)

The said fact gives an informal sense to eq. (4)
and permits us to use it in the study of non-stationary
processes in NFWR. Function G in the explicit form is
constructed and analyzed in the last two sections for
two definite models of nucleus kinetics.

We shall restrict ourselves to the consideration
of a one-dimensional model only since the issue of
transverse and longitudinal leakages constitutes a sep-
arate problem and will be considered elsewhere.

GENERAL PROPERTIES OF THE
STATIONARY WAVE PROBLEM

Let the external source be absent, s = 0, the wave
coming from infinity, the initial moment equaling #,=—c,
and neutrons at the initial moment at the finite point being
absent. In this case, the NFWR may be described by a
system of equations which includes eq. (6) at S= 0 and
nucleus kinetic equations of the following general form

?szch(No,N,w) ©)
t
ON _sn% AN (10)
ot ot

where & is the matrix, elements of which are the micro-
scopic cross-sections of absorption and capture, and y)
the matrix, elements of which are the decay constants
of B-active nuclides.

Let the wave propagate in the infinity medium
along the Ox axis, from right to left. For a stationary
wave of velocity u, all the fields are functions of one
wave variable x + ut, whose value varies from — to
+oo, Let T be the characteristic time of wave propaga-
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tion and L be its characteristic size. Then, one can de-
fine the dimensionless wave variable as
_xL
L T

‘We shall define the value of L below, and consider
T as a free parameter which determines wave velocity as
u = = L/T. So that the dependencies of all the fields on
the dimensionless coordinate x/L and dimensionless
time #/T are actually the same and coincide with the de-
pendence on the wave variable z. The system of partial
derivatives (9)-(10) is transformed to the system of
ordinary differential equations of the wave variable z.

The processes which take place during wave
propagation are characterized by several, sufficiently
different time scales. In addition to 7, other time scales
are determined by the neutron life time 7. The men-
tioned life time is connected to the function g, and can
be properly defined in the definite model only. It is im-
portant that g7 is the value of the order of unity and
therefore Gt ~y. Besides, it is known that in fast reac-
tors the neutron lifetime of the order of 7 ~107¢-10"7s,
while T varies from days to months, depending on re-
actor power. Soe =7/T <1077 is an extremely small pa-
rameter. Another time scale defines the f-decay of the
intermediate nuclide, 172 which, in order of magnitude,
could be compared with 7 butisreally always 4,< T.

Let us define the following values in order to
write the equations in dimensionless form

z

(11)

Al

o ' ’
o =—, W :UIW9 g :Tgn
0,
G'=0,7G, N' = N (12)

10

where o and Ny, are the absorption cross-section and
initial concentration of the fertile nuclide, correspond-
ingly, and dimensionless values are denoted by primes
which are omitted below. The values A and T are still
dimensional, but the product 74 is dimensionless.
Multiplying eq. (9) by 7, one can obtain

. Dt . —
€w=vFW+G(N,v/) (13)
N =y6N +TAN (14)

where z derivatives are denoted by dots. Since € is ex-
tremely small, the term £y in eq. (13) can be neglected
with a high precision (the neutron diffusion process is
actually stationary).Then it is seen from eq. (13) that
one can define L as the length of neutron diffusion dis-
placement during lifetime

I’ =vDt (15)
As a result, the system (13)-(14) takes the form

i =-G(N,y) (16)

N =N +TAN (17)

The stationary wave is a partial solution of the
system (16)-(17) and should satisfy some additional
conditions. Since the correct mathematical formula-
tion of the problem is not obvious, it is necessary to
take into account certain physical considerations.

The stationary burning wave is the transition of
the system from one homogeneous steady-state to an-
other. This initial state, the state of “fuel”, is a given
one. It is established as

N;(x,t)=N,, n(x,t,)=0, y=0 (18)

The final state, state of “ashes”, is to be deter-
mined in the process of solving the problem.

]vi(xatf):]vif, n(x’tf):()’ l//:l//f (19)

Both states are the solutions of the system
(9)-(10) in variables x, ¢, and the solutions of the sys-
tem (16)-(17) is relative to the wave variable z too.

As the initial and final states are stationary, the
initial and final concentrations of all unstable nuclei
should be equal to zero N;, = N;= 0. In reality, this re-
striction concerns nuclei with a relatively small life-
time of 8-decay, 7, < 7" In addition, both states are ob-
viously subcritical, therefore g(NV;,) <0 and g(V,¢) <O0.

The initial and final states are the stationary
points to which the solution of the system (16)-(17)
should tend at z— —e and z— +. The linearization of
eq. (16) with respect to small deviations from the
steady-states (18)-(19) leads to linear equations of the
stationary diffusion of the same form

—a? =0 (20)

with two exponential partial solutions 7 =e¢***. Here
W =y, o =a, for the initial state, and 7 =y, -y, 0 =
= o for the final state, the constants being defined by
nuclei concentrations in “fuel” and “ashes”

al=—g(N,)>0, a’=—g(N,)>0 (21)

Rise-up and descending parts of the wave are de-
scribed by the exponentially decreasing functions at
z—> —o0 1 z— +oo, correspondingly

X+ ut

y(z)=Ae" =4e

X+ ut

v, —w(z)=Be " =Be (22)

where Ly =L /agand Ly = L/os.
Thus, the solution of eq. (20) should satisfy the
following conditions

z—>— N, >N,y >0,y —>0y—>0,.. (23)

z—>— N, >N, v >y, v >0,y—0,.. (24)
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Among them, independent conditions which do
not contain unknown values are the following

z—>— N, 5>N,, y—>0 (25)
z— - iy >0 (26)

So, the formulation of the problem includes
equations (16) and (17), boundary conditions (25) and
(26) and the condition of neutron flux density
non-negativity

v >0 (27)

Seemingly, the number of conditions are equal to
the order of the system (16)-(17): there are first order
equations for every N, with initial conditions and two
conditions to the second order eq. (16). But, it can be
seen that the problem (16,17)-(25, 26, 27) does not
change with the replacement z — z—C which reflects
the obvious demand: the location of the wave at the
wave coordinate is arbitrary. So, one of the conditions
(25)-(27) is redundant, as should be in an eigenvalue
problem.

The problem (16,17)-(25, 26, 27) always has a
trivial solution which corresponds to its initial state. In
this solution, the initial and final states coincide. The
non-trivial solution exists if one satisfies problem con-
ditions due to the free parameter which is called the
spectral parameter of the problem. In the given case,
such a parameter is 7. This parameter determines the
velocity of the wave u = L/T. Thus, one can obtain the
stationary wave field distribution integrating the sys-
tem (16)-(17) with the known T So, in the given physi-
cal system, the velocity of the stationary wave has a
definite value, if such a wave exists.

But the task of NFBW theory is not only the cal-
culation of wave velocity and other wave characteris-
tics. It is also necessary to prove the possibility of
wave formation at definite real initial conditions, and
the solution of the problem of the stationary wave has a
physical meaning only in the case when it offers a sta-
ble solution for the non-steady system (13)-(14). This
issue surpasses the framework of our paper.

NFWR as a physical system and the correspond-
ing mathematical model can be characterized by a set
of material parameters which can be changed practi-
cally. Such independent parameters are called control
parameters of the system. Their numerical values de-
fine the point in the control parameter space. The prob-
lem eigenvalue is obviously a function of control pa-
rameters.

The existence of control parameters is very im-
portant because in a non-linear system the eigenvalue
can be absent or there can be several eigenvalues, de-
pending on the values of the control parameters. In
non-linear systems, a situation when the solution at
z — oo tends to different bistability waves, depending
on initial conditions, is also possible. Thus, practi-
cally the most important aim of the theory is the study

of the eigenvalue spectrum and wave characteristics
dependent on point location in the control parameter
space and the provision of optimal/prescribed char-
acteristics of the NFWR.

THE GENERAL CONDITIONS OF
WAVE STATIONARITY

The boundary problem (16), (17-25), (26, 27)
can not be generally solved analytically, but one can
find some general conditions for the stationary wave.
The configuration space for the system (16)-(17) is the
space of variables (IV,, y), while the phase space is the
space of variables (N, v, 7). When the system moves
from the initial to the final state, fluence y monoto-
nously varies with coordinate z from zero to y, 0 <y <
<. Therefore, one can consider that N and y are the
functions of y at phase trajectory. Let us multiply the
eq. (16) by y and integrate it from the initial conditions
(25) to the current state. Taking into account that in the
initial state y = 0, for the current state, one can obtain

S+ M) =0 (28)

M(N,y)=[G(N,y)dy (29)

Thus, in order to satisfied the boundary condi-
tions in the final state (24) y =0, ¥ =0 at z — —oo, it is
necessary and sufficient to satisfy to the following two
conditions B

G(N;.y)=0 (30)

M(N;,y)=0 (31)

where the integral is taken along the trajectory of the
systemﬁ =N(z), v =y/(z). These are just the general
conditions defining the stationary wave. More exactly,
the conditions (30) and ( 31) define two parameters —
wave velocity (or parameter 7) and final fluence. The
solution of (16) and (17) satisfying the boundary condi-
tions (25-27) with these parameters corresponds to the
stationary wave, 1. e. satisfies all problem conditions.
It is interesting to note that the condition y = 0 at
z — + is the effect of condition y = 0(26), but condi-
tions (30, 31) are really different and are both neces-
sary. Independent arguments can be presented to prove
this. Equation (16) has the form of a Newton equation
for the particle of a unit mass with coordinate y, which
moves under the influence of force F'=—G The parti-
cle begins the movement at the moment z = —e, with-
out initial velocity from point y = 0, in which yy =0
also, so the initial point is the equilibrium position. At
first, the particle gathers speed under the influence (at
first of a positive and then of a negative force), then
gradually inhibits and at z = +e reaches the final point
v = wg, whereitstops. Thisis possible if iy = y;is also
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the state of equilibrium where G = 0 — condition (30),
and the work of force G during the displacement 0—
— y;is equal to zero — condition (31), because the ki-
netic energy at initial and final points is zero.

If at some point v = y; force G becomes zero,
but the speed persists to be positive, the particle does
not stop and displaces in the region y = ;. If at some
point the speed, which was positive, becomes zero and
the force (negative) is not zero, the acceleration is still
negative and the speed changes sign: the particle
passes the turning point. Such a trajectory also has no
physical sense, since function y is proportional to the
neutron flux and always y > 0. But this mechanical
analogy has limits, because the problem with arbitrary
initial conditions has to have a physical sense in me-
chanics. In our case, the boundary problem of steady
diffusion in which the conditions are fixed at z == is
considered. Therefore, phase trajectories which do not
satisfy the boundary condition at z=+c have no physi-
cal sense (see fig. 1).

0.25 1

0.2 1

0.154

0.1

0.051

02 04 06 08 1 12 14 16 18 2
w

Figure 1. The phase trajectories in the plane (v, y) for
defferent values of absorber concentration p in the limite
W— 0; for curve 1, p > py; for curve 3, p <p,; for curve 2,

P=Do

Generally, conditions (30) and (31) are the con-
ditions of equilibrium which provide for wave
stationarity. They reflect the integral space-time prop-
erties of the system and are the analogies of criticality
conditions in usual reactors. But, the essential differ-
ence, when NFRW are concerned, is that at least two of
such conditions are present.

The physical meaning of condition (30) is obvi-
ous for steady diffusion: this is an integral condition of
neutron generation and absorption equality along the
wave. Contrary to condition (31), only its geometrical
meaning is obvious: the area under the curve G(y)
along the trajectory should be equal to zero (the area is
positive, where G(y) > 0, and negative, where G(y) <
<0, see fig. 2). All that remains to be said is that it re-

G(w)

0.02

Figure 2. The dependence of the fluence generation
function on the dimensionles fluence

flects the distribution of neutron production along the
fluence coordinate.

Let us write the wave stationarity conditions in
terms of the neutron generation function

Vi
[gdy =0 (32)
0

f(wf -y)gdy =0 (33)

where g is the function of the fluence along the sys-
tem trajectory. Obtained conditions coincide with the
conditions of level static equilibrium under the influ-
ence of perpendicular to the level distributed force
2(w), which is acting at the interval 0 < w < w¢(w is the
coordinate along the level). Conditions (32) and (33)
are the conditions of the sum of the forces and sum of
the force moments equal to zero, correspondingly.
Therefore, the first condition is the integral condition
of neutron creation and absorption equality, and we
can call the second condition the integral condition of
neutron creation and absorption “moments” equality.
Such a momentum is calculated in (33) relative to the
point y = wr. Of course, if the condition (32) is ful-
filled, the momentum can be calculated relative to the
arbitrary point. We shall call (below) function M —
neutron generation momentum.

One can transform conditions (32) and (33) to
those analogous to the criticality condition of usual re-
actors: k. = 1, where k. is the effective multiplica-
tion factor. Letus, for this purpose, disjoint the neutron
and fluence generation functions into two parts

g=g" -g (34)

so that g"and g~ are positive (the bars denote the
mean values). Besides, coresponds to neutron genera-
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tion and coresponds to neutron absorption. Then the
effective multiplication factor for a usual reactors has
the form gt

keff = (35)

g

Let us call these points fluence axis with coordi-
nates v
[wg*dy
vt
g dy

0

(36)

“centers of neutron generation and neutron absorption
application”. And let us introduce the integral neutron
multiplication factor for the NFWR

—+

k=5 (37)
g
and integral coefficient of space equilibrium
K=o (38)
7

Then one can write the conditions of wave
stationarity (32, 33) in the form

K=k =1 (39)

The advantages of such coefficients setting con-
sist in their different behavior with changes of distri-
butions g and g~. For example, multiplying g* by K,
we obtain an increase in £° but not in k. Therefore, £’
reflects the absolute value of g" and g, and k' shows
their special distribution along the fluence.

Both coefficients are the functions of wave prop-
agation time 7 (or wave velocity u = L/T), maximal
fluence y; and system control parameters ¢,, and two
conditions (39) implicitly determine the dependences
r= T(qs) and Ve =V (qs)

Summing the obtained results, one can make the
following qualitative conclusion: in addition to the in-
tegral equality of created and absorbing neutrons, the
distribution of neutron creation and absorption density
along the fluence coordinate is important for wave
stationarity. One can write the corresponding condi-
tion of time — space equilibrium in the wave as the con-
dition of generation and absorption centers of applica-
tion coincidence along the fluence coordinate
v =y ,ork'=1.So the wave should be balanced by
two (notjust one) parameters simultaneously, which is
extremely important.

We shell consider below the specific models of
the system in which the nuclear burning wave can
propagate, taking into account the different nuclides
affecting wave propagation.

NFWR WITH ABSORBER

Let us consider a nuclear system which can be
separated into two independent subsystems: “fuel”

and “absorber”. Let us refer to the fuel the fertile nu-
clide and all other nuclei appurtenant to the
transformation chains of fertile nuclide, i. e., which
can format by the successive transformations due to
the interaction with neutrons, decays, and fission, in-
cluding fission products. If there is only one fertile nu-
clide in the initial state, the concentrations of all nuclei
appurtenant to the “fuel” are linearly dependent on the
initial concentration of fertile nuclide V.

In order to regulate the neutron balance in the
system, let us introduce into the composition of the
system other nuclei-absorbing neutrons. This is the ab-
sorber itself. But we also refer to the absorber all nuclei
which do not belong to the fuel, including those chem-
ically bounded with fertile nuclide, for example, oxy-
gen, construction materials and so on. The existence of
the absorber is crucial, since it can control the proper-
ties of the system in definite frames.

The neutron generation function in such a sys-
tem is the sum of two terms

g=g'(N)-—- (40)
Ta
where g'is the fuel part of the generation function lin-
early dependent on fuel nucleus concentrations N;, and
74 1s the neutron lifetime relative to the absorption by
the absorber nuclei, besides 74 = const (absorber does
not saturate).
Passing on to the dimensionless neutron genera-
tion function, it is necessary to multiply (40) by neu-
tron lifetime 7

g=g'(N)-p

where g, gf are dimensionless (primes are omitted),
and p = 7/74 is the dimensionless effective absorber
concentration.

Energy release in the wave region increases, ap-
proximately, in proportion to its velocity. Therefore,
from a technical point of view, the acceptable level of
energy release restricts the velocity range to values
ranging from months to years for wave propagation
time 7. The main inner time scale for the NFWR is
determined by the time of S-decay of the intermediate
nuclide N,, 73 = 7,. This is *’Np with a characteristic
time of B-decay 7, =3.47 days per uranium cycle, and
233pa with B-decay half-life 7, =36.6 days for the tho-
rium cycle. Therefore, the value of the actual
dimensionless wave velocity

[

w T (41)
for the uranium cycle is always small. For the thorium
cycle W<1, and when 7" > 1 year also W < 1. So, we
will call the wave with a small value of dimensionless
velocity a wave of small velocity. The existence of a
small parameter in the problem gives us the possibility
to put to practical use wave stationary conditions (32,
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33) and to analytically develop the perturbation theory
or build an iteration scheme of calculation.

For the sake of simplicity, let us consider that the
system has one control parameter —a dimensionless ef-
fective concentration of absorber p. In that case, wave
stationarity conditions give two equations for three val-
ues: p, W, y; Therefore, W= W(p) and yy= w((p). Thus,
we can obtain waves of different velocities changing
the control parameter. But, it is convenient for a wave of
small velocity to consider that the velocity of the wave
is known. Then, from wave stationarity conditions for
the given dimensionless velocity W we can find y; and
control parameter p at which the wave of given velocity
is realized

v =y, (W), p=pW) (42)

The scheme of problem solution by the conver-
gence method is following. If W« 1, one can find all nu-
clide concentrations N, , values of G, M, and parameters
wrand p in the form of power series of W

omH)=0Y +wQ®" +... (43)

where Q is one of the mentioned values. It is necessary
to determine which term in the power series is the first
to differ from zero at W — 0 for the given value, and
which term is the small correction to the first one. For
this purpose, let us define the first three equations of
the system (14) and let us consider all other nuclides
and fission products as stable

Nl =y N, (44)
. . N, .
Ny, =awN, W A Z\E (45)
- N .
N, =W2_73‘/’N3 (46)

Here o) =0,/0,1, 7,=0 /0,1, ¥3=0,3/0 15
N, is the concentration of the fertile nuclide (***U or
232Th), Njs is the concentration of the main fissile nu-
clide (*°Puor V). Itis seen from eq.(45)thatat W —
— 0, the concentration of the intermediate nuclide N,
tends to zero (it decays quickly compared to the time of
wave propagation). Besides terms of zero order, W
contains the first term in the right hand side of eq. (45)
and terms N,/W in eqs. (45) and (46). All other terms
which contain N, in all kinetic equations are the terms
of the first order in ¥, and one should neglect them in
zero approximation in /. Then we have fromeq. (45)

N .

WZ=Q1WN1(W) (47)
and substituting this in eq. (46), we exclude N, from
the nuclear kinetic system.

If we denote all sets of nuclides without N, as N’
and take it as stable, then one can pass on from z to the
new independent variable v, dw =y -dz. As a result,

the system (17) takes the form of a system with con-
stant coefficients

dN’

dy

So, in zero approximation in ¥, nuclide concen-

trations are determined only by the current value of
fluence

=6N' (48)

NO =NOw), i#2 (49)

Besides, the equation for N, is integrated inde-
pendently on W
N 1= eV

Therefore, the values of G and M, which are the
linear functions of nuclear concentrations, are also the
functions of fluence in the zero approximation in /¥,
and conditions of wave stationarity (30) and (31) take
the form of the equation system for p and y;

G=G"(py,)=0 (50)
M =M (py,)=0 (51)

Let us denote the solution of this system as p,
and g, then in zero approximation p© = p, w{(® =
= Vi

Furthermore, substituting in eq. (30) the formula
for neutron generation momentum M in zero approxi-
mation at p = p,,, one obtains the equation for a system
phase trajectory in zero approximation. Returning to
the mechanical analogy in previous section, one can
say that in zero approximation the forth field G, in
which the particle motion occurs, is potential, and eq.
(30) has the form of the energy conservation low at
zero full energy. From eq. (28) at p = p,, taking into ac-
count (12), we have y, i. e. dimensionless neutron flux
@ as a function of fluence

y = D) (52)

D(y)=~-2M(p,,v) (53)

Dimensional flux fromegs. (3),(12), and (41) is
i

T

where

o (54)
2
and it is proportional to the wave velocity in this ap-
proximation.

Finally, integrating the first order eq. (52) with
an arbitrary initial condition
z2-z, = IJI{ dv

uw @ (W)

(55)

one can find the bond between fluence and wave coor-
dinate with an accuracy of arbitrary constant z;. Thus,
all the values which characterize the small velocity
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wave are determined, except for the velocity itself
which is not determined in the zero approximation.

In the next approximation, it is necessary to take
into account in eq. (45) and other equations the linear
in NV, terms, which was not accounted for in the zero
approximation, and to determine the corresponding
corrections to concentrations which should depend on
wave velocity. Using for the N, the results zero ap-
proximations (47), (52), and (53), one obtains that the
corrections to the concentrations &V,, i = 3 are also the
functions of w and have first order in /. It should be
mentioned that these corrections take into account an-
other channel (except the neutron capture by 2*°Pu) of
formation of higher fuel nuclides N,, i > 3 because the
nuclide N, is formatted as a result of intermediate nu-
clide burn up (this is 2*°Pu for the uranium-plutonium
cycle and 234U for the thorium-uranium cycle).

As G and M are linear dependent on nuclear con-
centrations, the corrections to G and M have the first
order in W also, and the wave stationarity conditions
become

G p,w)+ WG =0 (56)

MO (py)+wM? =0 (57)

It is necessary to expend in eq. (56) all values in
the power of W up to the first order terms, and take into
account that the conditions of zero approximation (50)
and (51) are fulfilled at p = poand w;= yy. Taking into
account also the relation

oM _
oy
which follows from the determination (29), one ob-

tains that the first order corrections to p and v differ
from zero. We have with accuracy to linear terms

G

M(l)

=p,—-bW, b=—— 58
P =Py oM (58)

op

One can rewrite this equation in the form of
wave velocity dependence on the change in the control
parameter I

u=——(p,—p) (59)
7,d
where d is the dimensionless coefficient. The adapt-
ability of formula (22) for wave velocity is restricted
by the condition ur
W = TZ <1 (60)

Since d > 0 and W > 0, the wave exists in the
given case at p < p, only. Namely, p, has the meaning
of the upper limit for the absorber concentration at
which the wave can exists. It should be mentioned that
we have formally p =p,, in zero approximation without
accounting for the linear in  corrections. This can

give the wrong impression that the wave exists only at
P = p,, and its velocity is arbitrary. As can be seen from
eq. (59), this is not really the case, but in the limits of
zero approximation accuracy p ~ p, independently of
W for the waves of small velocity. The obtained results
have a general character. One can obtain additional re-
sults in specific models of nuclear kinetics and pro-
cesses which have an impact on neutron balance.

THE SPECIFIC MODELS OF NFWR

The minimal (basic) model of NFWR includes
such and only such elements without which the sta-
tionary wave is impossible. The construction and anal-
ysis of the minimal model is an obligatory initial step
in the creation of phenomenon sequential theory, be-
cause itensures the basic level of phenomenon qualita-
tive understanding. Any other adequate model should
contain it as a partial case and therefore is the develop-
ment of the minimal model. The closer to the minimal
model of NFWR is the model of Feoktistov [1]. The el-
ements of this model which are of no consequence for
the existence of NFWR are excluded from the given
work and, also, the real control parameter — absorber
effective concentration — is introduced instead of plu-
tonium critical concentration, whose value is in reality
variable. Together with the minimal model, we will
consider below several dilated models which take into
account some additional factors.

The minimal model accounts for three nuclides
only: fertile (), intermediate (N,), and fuel (V3). For
the uranium cycle these are: 2*U, effective nu-
clidemNp, and **°Pu, and for the thorium cycle:
227, 23Pa, and U. An effective nuclide is a nu-
clide which takes into account by means of half-life
change the existence of an intermediate nuclide with
a small life-time (*’U or **Th). Nuclear kinetic
equations for the stationary wave in the basic model
are eqs. (44)-(46) at y,=0 (i. e. without effective nu-
clide burn up). The extensive model for the uranium
cycle takes into account the kinetics of four pluto-
nium isotopes instead of one: **’Pu, **°Pu, **'Pu,
2y (N3, N4, Ns, Ny correspondingly) and fission
products (V7). The kinetic equation system in the ex-
tensive model, except for egs. (44)-(46), also con-
tains following equations

]\.]izai—llj/]vi—l —7:WN; (61)

o

N7 = 1(71' —a; N, —o;, N, (62)

where o, =0 ,/0,,, ¥, =0, /0., i=4,5,6, anda;=
=0,/0y,.
The neutron generation function g in diffusion

eq. (1) takes the form

al>
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g=-p—-N,+B;N;+B,N,+
+BNs+PBsNs—fB,N,,

V.o, —0O,.
_ Vi i ai .
Bi=———-, i=3-6, (63)
O, —ViOq
ﬁ _ O-a7
, =0
O, —ViOp

where the concentration of the external absorber p is
given constant. Using egs. (6) and (63) we can find the
form of G as a function of concentrations N; and
fluence v

G:_pW+C](N]_1)+7ZciN[ (64)
i=2

where ¢; are cumbersome coefficients, which are ex-
pressed through the o}, %, and ;. Let us present those
for the basic model

by oo P B

] 2 5 3 s

73 72 73
¢, =¢C5=¢s=¢, =0 (65)

c, =

Besides, in the initial state
v=0, N, =0, k=2-7, N, =1 (66)
Let us restrict ourselves to the zero approxima-
tion in wave velocity. Then, N, = 0 in eq. (64). Using

the approximation (52), one can subsequently solve
the kinetic equations analytically

N, =¢" (67)
Ny =T @V =) (68)
ys—1
N=a,e¥ +aze™ + ... +ae’,
i=4-7 (69)

where aj; are the coefficients which are expressed
through the oy, 7i. Having these solutions, one can find
the fluence generation function and fluence generation
momentum as the functions of fluence y

G=-py+be” +be™ +... +b,e”" +c (70)

2
M=—L"2” +h,(1—e ")+
l—e sV 1—e 7V (71)
+by ——+ ...+, ——+cy
73 g

where b; and ¢ are expressed through ay, %, and SBy.
The balance conditions G =0 and M =0 have the form
of algebraic system for p and w. The variable p is sim-
ply excluded, and the obtained equation for y is solved
numerically. The obtained values of p = py and v = yy
correspond to the stationary wave of nuclear burning
in velocity zero approximation. Final nuclear concen-
trations are determined using egs. (67) - (69) at vy =
= yp. The neutron flux and connection between

fluence and wave coordinate are determined by egs.
(52)-(55).

Figure 1 and fig. 2 illustrate with an example of
the basic model the work of balance conditions (32)
and (33) or, more exactly, the conditions of zero ap-
proximation (50) and (51). The phase trajectories of
the system in plane (y, y), calculated with egs. (50)
and (51) for three different values of absorber con-
centration p are presented in fig. 1. Trajectories 1 and
3 for p < pyand p > p,, correspondingly, have no
physical meaning, since for the first one s changes
the sign (part of the curve with y < 0 is not shown),
and for the second one v/ is infinitely increased. In re-
ality, only trajectory 2 can exists, and it corresponds
to the stationary wave at p = p,,. This trajectory begins
at the point y =0,y =0 (initial state) and finishes at
the point w =y, ¥ =0 (final state). Besides, the
wave coordinate changes from — to +eo.

The dependence of the fluence generation func-
tion G on y atp =p,, is presented in fig. 2, which corre-
sponds to the curve 2 in fig. 1. Atp = p, and y = yy,
both balance conditions are fulfilled simultaneously:
G=0and M=0.

The parameters of the stationary wave p, and
Wy, calculated in zero approximation, and final values
of nuclear concentrations for the basic model and sev-
eral variants of the extensive model are presented in
tab. 1. This illustrates the influence of different ele-
ments of the model on wave characteristics in NFWR.

The first and second lines of tab. 1 refer to the ba-
sic model. Changing the parameters of nuclide N3, we
try to take into account (to some degree) not only
239Py, but all other plutonium isotopes. In the first line,
the cross-sections for Ny correspond to 2*°Pu. Other
plutonium isotopes are not accounted for. For the sec-
ond line, we take that absorption and fission cross-sec-
tions for N; are the same and equal to the fission
cross-section of 23°Pu. We take into account that other
plutonium isotopes can also be fissile. In reality, we
take that capture and fission cross-sections and aver-
age neutron number per fission for all plutonium iso-
topes are the same as for 22*Pu. In such a case, the con-
centration of N; corresponds to the sum of all
plutonium isotope concentrations.

It is obvious that such a change of N; parameters
leads to an increase in fission neutron number and, in
order to compensate this, absorber concentration
should be increased: as can be seen fromtab. 1, p,isin-
creased sufficiently. But, the final fluence g, de-
creases, and according to egs. (67) and (68), final con-
centrations NV, and N; increase.

The third line differs from previous ones by tak-
ing into account all four plutonium isotopes instead of
single Vs, but it does not account for the absorption by
fission products as in the basic model. This gives the
intermediate value of p, between the first two lines.
But, as is seen, the final fluence yy, is maximal com-
pared to the previous two. The final concentration of
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Table 1. The parameters of the stationary wave for different NFWR models

Model description

Final values of the dimensionless concentrations

Absorption by Po Vi

Isotopes of Pu fission products

N,

N, N, N Ne

29Py, gy # 0 no 0.335 1.770

0.171

0.021

29Py, gy = 0 no 0.711 1.604

0.201

0.032

239Pu 24()Pu
)

241P11, 242py 0.448

no 1.935

0.144

0.018 0.019 0.004 0.003

239py. 240py
>

24]Pu’ 242pyy 0.083

yes 1.123

0.325

0.040 0.035 0.006 0.003 0.284

239py. 240py
5

by 0.082

yes 1.121

0.326

0.040 0.034 0.006 0.283

fertile nuclide N, accordingly, decreases. This points
to the two-parameter character of the system: the sta-
tionary wave of small velocity is characterized by two
parameters p, and g, which are changed independ-
ently with changes in the contents of the model and its
parameters.

The forth line differs from the third one by ac-
counting for fission products, their accumulation, burn-
ing and neutron absorption by them. It can be seen, first
of all, that all parameters of the wave have cardinally
numerically changed compared to line 3. The appear-
ance of an additional neutron absorption channel leads
to a sharp decrease in p,,: the change of neutron absorp-
tion by absorber to absorption by fission products oc-
curs within the general neutron balance.

But, it can also be seen that such a change of one
absorption mechanism to another is not equivalent: the
final fluence is approximately half, and accordingly,
burn up decreases and final nuclide concentrations
change. This is connected with the change of neutron
generation momentum. It is sufficient that the absorber
and fission product insertions into the neutron genera-
tion function are distributed in a different way along
the fluence coordinate. The first one is constant, and
the second one increases together with fission prod-
ucts accumulation (fig. 3).

The fifth line shows that the isotope 24?Pu practi-
cally does nothave an influence on wave parameters.

Figures 3 and 4 show the dependency of fluence
on nuclear concentrations with the final fluence value
corresponding to the line 4 of tab. 1. One can get the
real wave profile by some non-linear dilatation of
these curves along the abscissa axis according to for-
mula (55), as a result of which, the finite interval (0,
W) turns into an infinite interval (—ee, «) of wave coor-
dinate or x, or .

Let us emphasize that the dependencies (67)-(69)
are determined by the nuclear kinetic equations only,
and therefore, are the same for all variants of tab. 1, ex-
cluding line 2, for which the cross sections of N; were
changed. The difference is in different final values of
fluence y = yy, of nuclear fission termination. There-
fore, the final nuclear concentrations and wave profiles
along the coordinates x and ¢ are different also.

0.8

0.6

0.4

0.2

Figure 3. The dependencies of the dimensionless
concentrations on the dimensionless fluence

1, 2, 3, and 4 denote concentrations N;, N;, N3, and Ny
correspondingly

N;
0.06
1
0.04 2
0.02
3
4
0
0.2 04 06 0.8 1

Figure 4. The dependencies of the dimensionless
concentrations on the dimensionless fluence
21,22, 3, and 4 denote accordingly 239 Pu, 240Pu, 241Pu, and
4
Pu
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The small corrections in W to the nuclear and
neutron concentration to p and y; appear in the next
linear approximation of wave velocity. Due to them,
the wave velocity has a definite value at the given ab-
sorber concentration p < p,. The same compensatory
mechanism appears with changing p, which due to the
change of wave velocity and y; eliminates the imbal-
ance in neutron generation and momentum generation
function. Besides, the necessary change in velocity is
determined by the change of the momentum genera-
tion function with changing p.

This compensatory mechanism appears due to
two first orders in ¥ terms in eq. (45) for the concen-
tration of the effective nuclide N,: these are term on
the left hand side and the last term on the right hand
side. Actually, two different parallel mechanisms are
at work here. The first one is connected with the accu-
mulation and subsequent consumption of nuclide N,,
which leads to a delay in the creation of N;relative to a
decrease in N concentration. In velocity zero approxi-
mation such a delay is absent. The second mechanism
is connected with the burning of nuclide »,, and corre-
spondingly, with the creation of nuclide N, (**°Pu) in-
stead of nuclide N; (***Pu). Both effects result in cor-
rections to the generation function.

The deposits of both mechanisms are compara-
ble. They have one order in wave velocity and are prin-
cipal terms in wave velocity determination. Therefore,
the velocity of a nuclear fission wave in general can
not be calculated adequately in every complex model,
if the said model does not take into account the “small”
effects of effective nuclide burning.

CONCLUSIONS

In spite of an obvious correspondence of con-
tents and nuclear processes at the microscopic level,
the usual fast reactor and NFWR are fundamentally
different in many features at the system level.

The NFWR is an autonomic system and the
usual fast reactor is not autonomic (except for short in-
tervals of control system non-intervention). Due to au-
tonomy, fluence y in a NFWR can play the role of the
internal variable of the system determining its current
state and space — time evolution of the system during
the propagation of the stationary wave of small veloc-
ity as a unidirectional movement along the fluence co-
ordinate from the initial to the maximal final value.
Current values of nuclear concentrations and neutron
flux are determined by the current value of fluence v
only.

The value of criticality itself is not sufficient for
the analysis of steady-state wave regime in NWFR.
The value which really determines the internal equilib-
rium in the nuclear fission wave is neutron generation
function’s dependence on fluence.

In point kinetics approximations for usual reac-
tors, the spatial concentration distribution is fixed,
only their amplitude changes and reactor dynamics are
time dynamics. Contrary to this, in NFWR, the station-
ary wave is formatted by two concordant processes:
spatial quasistationary neutron diffusion and nuclear
concentration time kinetics. As a result, instead of one
criticality condition required by the usual reactor, the
stationary wave regime in NFWR requires two bal-
ance equilibrium conditions. These conditions are
analogous to the conditions of solid mechanical equi-
librium in the field of external forces: the zero and first
momentum of neutron generation function integrated
over fluence should be equal to zero. Practically, this
means that not only the full number of generated and
absorbed neutrons during wave propagation should be
balanced, but that their distributions inside the wave
should also be balanced, namely that their centers of
area along the fluence coordinate should coincide.

As can be seen from presented calculations,
the dimensionless fluence in NFWR reaches the val-
ues ¥ = 1-2, and the level of fuel burn up (fertile nu-
clide) is >30%, which is significantly higher than in
usual reactors. Therefore, the processes, which are
usually not of great importance in fast reactors, can
play a significant role in NFWR at large levels of
burn up. Accordingly, traditional approximations
for fast reactors are not congenial to NFWR and
should be revised. This is, for example, relevant
when fission products are concerned, since the re-
sults for different NFWR models show that neutron
absorption by fission products has sufficient numer-
ical influence on wave parameters.

External absorber addition to fuel content gives
us the possibility of controlling wave velocity and
lowering its value to an acceptable level of energy re-
lease from a practical point of view. In the actual
range of small wave velocities, velocity decreases
linearly to absorber concentration growth, while a
stationary wave does not exist when the absorber
limit concentration, which formally corresponds to
zero wave velocity, is exceeded. The necessities for
the existence of a stationary wave of small velocity
absorber concentration and final fluence are mainly
determined by the cross-sections of nuclides con-
tained in the reactor, and are dependent on wave ve-
locity to a very small extent.
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OU3NIYKA OCHOBA ®UCHUOHOI TAJTACHOI PEAKTOPA
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KOPHUCTHTH 32 OTIUC CTAI[IOHAPHAX W HECTAIIMOHAPHUX TIpoIieca. Y pajy cy Hajpe yTBpheHa fiBa ycioBa 3a
er3UCTCHIN]Y CTAalMOHAPHOT Tajaca, a MOTOM je (popMyJIICcaHO PaBMWiIo 3a ofapebuBame Gp3uHe Tamaca
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