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The fourth order Rosenbrock method with an automatic step size control feature was
described and applied to solve the reactor point kinetics equations. A FORTRAN 90
program was developed to test the computational speed and algorithm accuracy. From
the results of various benchmark tests with different types of reactivity insertions, the
Rosenbrock method shows high accuracy, high efficiency and stable character of the

solution.
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INTRODUCTION

The point kinetics equations, the simplified nu-
clear kinetics model, are a system of stiff ordinary dif-
ferential equations (ODE). Although the current re-
search highlights focus on the space-time solutions,
the point kinetics equations still play an important role
in nuclear kinetics analysis. An accurate and efficient
general numerical method is needed to solve the point
kinetics equations with any reactivity driving func-
tions.

Extensive literature can be found on how to
solve the reactor point kinetics equations. For exam-
ple, Chao and Attard [1] developed the well known
stiffness confinement method that eliminates the stiff-
ness of the delayed neutron precursor and confines the
stiffness inside the neutron density. The traditional
generalized Runge-Kutta method was used by
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Sanchez [2] to solve the stiffness problem. Recently,
the power series solution [3], reactivity piecewise con-
stant approximations [4], Padé approximations [5],
CORE numerical algorithm [6], and better basis func-
tion [7] have been successively applied to numerical
solutions of the reactor point kinetics equations. These
methods are briefly discussed as follows.

Stiffness Confinement Method (SCM). By intro-
ducing an assistant function, the stiffness was con-
fined inside the neutron density and eliminated from
the delayed neutron precursor density. Within one time
step, iteration and a linear extrapolation are required to
find the value of the assistant function. The numerical
tests demonstrate that SCM produces moderate accu-
racy under moderate stiff condition and low accuracy
where the stiffness is strong. The implementation of
this method is relatively complex.

Generalized Runge-Kutta method (GRK). The
solution of the fourth order GRK method adopts the
form of the Runge-Kutta solution. The coefficients are
found by solving four systems of linear equations. The
automatic step size control was realized based on the
truncation error of each time step. There is no approxi-
mation in this method, and good agreement between
the GRK solution and the exact value is obtained, but
the relative error of GRK solution may exceed the pre-
defined tolerance under the strong stiffness condition.

Power Series Solution (PWS). The power series
was used to represent the solution of the point kinetics
equations. The neutron density is obtained after com-
puting the matrix elements and PWS coefficients in
the recurrence relation. A high accuracy in the slow
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transient case can be obtained while the moderate ac-
curacy under the condition of the strong stiffness is ob-
served. The computation speed is relatively slow com-
pared to the Rosenbrock method described in this
paper.

Reactivity Piecewise Constant Approximations
(PCA). PCA assumes that the reactivity slowly varies
with respect to time. The piecewise constant function
over a time partition is used to approximate the contin-
uous reactivity function. Newton’s method is utilized
to find the roots of the inhour equation, which are the
eigenvalues of the point kinetics matrix, and the
eigenvector is computed by matrix multiplications.
This methodology applies to the moderate fast or slow
transient problems, since the error becomes large
when the problem becomes very stiff. This method
showed to be accurate for the step reactivity, and mod-
erately accurate in computing the ramp reactivity. The
implementation of PCA is simple and computation
speed is expected to be fast.

Padé Approximations. The Padé rational ap-
proximation is used to approximate the exponential
function in the point kinetics equation solution. The
roots of the inhour formula are used as the eigenvalues
of the point kinetics matrix. The numerical tests dem-
onstrated that high accuracy could be achieved in
strong step reactivity insertion. The low step size was
required to compute the zigzag reactivity ramp to ac-
quire the same accuracy.

CORE Numerical Algorithm. Laplace transform
and Heaviside expansion theorem give an explicit so-
lution to the point kinetics equations. The roots of the
inhour equation serve as the parameters in the expo-
nential term and the other coefficients can be found
through another explicit formula. Then, determining
the initial condition for the next time interval is re-
quired to advance to the next step. This methodology
assures relatively moderate accuracy.

Better Basis Function (BBF). This recently pub-
lished methodology is based on the third order expo-
nential function used as a basis function to approxi-
mate the integration of the neutron density. The four
coefficients in the basis function are obtained by solv-
ing four equations. The users have to provide the ana-
lytic equation of the integration of the multiplication
of the reactivity function and an exponential function.
Since the integration is not as friendly as the differenti-
ation, the integration term may not be represented by
the elementary functions for some reactivity func-
tions. The numerical tests show that this method is rel-
atively accurate compared to the large step size used in
those benchmarks. The discrepancy becomes large
when the neutron density changing is very fast.

Most of these methods cannot achieve the per-
formance of the Rosenbrock method. In other words,
the Rosenbrock method can achieve high accuracy
with fewer integration steps. Besides, without the
function of the automatic step size control, users will

have difficulty in determining the step size based on
the desired accuracy and problem stiffness. Compared
to the traditional GRK method, three major improve-
ments were made: the formulas were revised to re-
move the time variable from the list of the dependent
variables to reduce the computation time; the original
set of parameters was replaced by another set proposed
by Shampine [8] for better performance; LU (Lower
triangular Upper triangular matrix) decomposition
substituted the matrix inverting to reduce the tedious
mathematic derivation and coding work, while the
general mathematic procedure made the program have
the function of solving the point kinetics equation with
any delayed neutron groups.

In this paper, the Rosenbrock method solution of
the reactor point kinetics equations is presented. A
FORTRAN 90 program was developed to test the ac-
curacy and efficiency of this methodology (see Ap-
pendix). Numerous benchmark tests are presented
leading to a conclusion that the presented methodol-
ogy shows high accuracy and high efficiency. We also
used this development to incorporate into experiential
interactive learning tools on reactor physics at the ju-
nior level in nuclear engineering programs at the uni-
versities in United States. There is an evident nuclear
renaissance started with this century, inspiring educa-
tional system to revitalize and revisit teaching meth-
ods.

ROSENBROCK METHOD IN
POINT KINETICS EQUATIONS

The Rosenbrock method [9], also known as the
Kaps-Rentrop method, evolves from the GRK
method. It seeks the solution of stiff ODE in the fol-
lowing form

V=1 (1)

where y is an n-dimensional column vector. The solu-
tion of eq. (1) at each time step is given with

W(to +h)ZJ’(to)+jzlbigi (2)

where ¢, is the initial time, # —the step size, b; — the con-
stants, g; — the column vectors, and s — the order of the
Rosenbrock method.

In order to perform the automatic step size con-
trol, two estimates of eq. (2) are computed: one y with
the order of s and coefficients b; and the other y, with a
lower order of 5 and different coefficients b; . The dif-
ference between y and y gives the truncation error at
this time step that can be used for step size adjustment.
Kaps and Rentrop [10] suggested the smallest value of
s and 5 to be 4 and 3, respectively; this is called the 4
order method [9].
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Adding ¢ to the list of dependent variables is not
necessary, even if the right-hand side (RHS) of eq. (1),
S, ) explicitly depends on . The g;needed ineq. (2) is
obtained as follows

1 of of
— ] = , to )+ he, ——
(yh oy 1 =S o)+ hey o1

1 0
*1—l 2 = f(yog +axg, ty+ah)+
yh Oy

af €181 (3)
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where 4 is the step size, a, ¢, and y are constants, and /
is the identity matrix.

Equations (3) consists of four linear systems of
equations. Because the left-hand side (LHS) matrices
are the same, only one time of the LU decomposition is
needed to factorize the LHS matrix. Thus, starting
from the first equation of eqgs. (3), g; are found by four
back-substitution with four different RHS of these
equations. The estimate of y is computed by eq. (2),
and the truncation error is obtained as follows

err= ieigi (4)
i=1

Since the error criterion is defined by the relative
eITor, a VECtOr Y, .- 1 required to scale the truncation
error at each time step (tiny value is added to avoid
Vscale t0 become zero)

Vscale :‘y(to )“"‘hf(yo,to )‘+10730 (5)

The maximum error of the vector y is obtained
with
€1y = ma){ J (6)

max
If the err,,, is larger than the predefined error
control criterion &, the already computed y estimate
will be abandoned, and a smaller step size 4., will be
found according to

err

Yscale

retry

By =max[09(err,. )"3,0,50]  (7)

retry
to recalculate y. Otherwise, this y estimate will be ac-
cepted and the next step size will be determined based
on the truncation error of this time step as follows

09h(err,, ) " if err,,, >01296
next = (8)

1.5h else

Instead of using the coefficients of Kaps and
Rentrop [10], the parameters suggested by Shampine
[8], which are assumed to have better stability and ac-
curacy, are used in developing this methodology.
Those parameters are

y=20.5;

ay = 2, as; = 192, aszy = 024,

21 =8, ¢y = 14.88, ¢y, = 2.4, ¢4y = —0.896,
Cqp = —0432, C43 = —04,

b1 =19/9, by = 0.5, by = 25/108, by = 125/108;
e = 17/54, e;=7/36, e = 0, es = 125/108;
c1=0.5,¢6=-15,¢3=2.42,¢c,=0.116;

ay = 1, asy = 0.6.

The well-known reactor point kinetics equations
are

dn(t) _p(t)-p S
% - A n(t)+i:Zlﬂ~1C1(t)

D Ln-ac0) i-126 O

where n(#) is the neutron density, Ci(f) — the delayed
neutron precursor density of i-th group, p(f) —the reac-
tivity driving function,  — the total delayed neutron
fraction, f3; — the delayed neutron fraction of the i-th
group, A;—the decay constant of the i-th group, and A —
the average neutron generation time.

Therefore, for a given reactivity driving function
p(f), the matrices in eq. (3) are defined as

O

f.o=| s . y  (10)

where

of | Py, (11)




Nuclear Technology & Radiation Protection — 1/2009

6
n(t) do(1)
A di
of _ 0
ot : (12)
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Because the matrix dimension is reduced by one
by removing the time variable from the list of the de-
pendent variables, the computation time can be saved
for 30% (for six delayed neutron groups) to 60% (for
one delayed neutron group) compared to the conven-
tional GRK method [2].

BENCHMARK TESTS

We present seven different benchmark examples
[7, 11, 12] including the step reactivity, ramp reactivity,
zigzag ramp reactivity and sine reactivity to verify the
methodology and numerical solutions, the accuracy and
computational time. In all presented tests the automatic
step size control with an initial tentative step size of
0.01s and the error toleration of 107 is specified. All of
the presented kinetics examples start from the equilib-
rium state, therefore, the C;(0) are computed using

Bi
o, n(0) (13)

C,(0)=

with n(0) = 1.0. The benchmarks 1, 2, 3, 5, and 6 share
two sets of typical reactor parameters that are listed in
tab. 1. The exact solutions of those benchmark tests are
adopted from da Nobrega [11], but the method that pro-
duced the exact solution was not mentioned in this refer-
ence.

The computation time of the numerical solutions
presented for all benchmark tests is obtained by run-
ning the FORTRANO90 code on the AMD Opteron
2354 Processor. The average step size is obtained as
the total integration time divided by the total number
of calculation steps.

Table 1. Kinetics parameters for two typical reactors

Thermal reactor Fast reactor
Group
Ai[s™] Bi Ails™] Bi
1 0.0127 0.000285 0.0129 | 0.0001672
2 0.0317 0.0015975 | 0.0311 0.001232
3 0.115 0.00141 0.134 0.0009504
4 0.311 0.0030525 0.331 0.001443
5 1.40 0.00096 1.26 0.0004534
6 3.87 0.000195 3.21 0.000154
s 0.0075 0.0044
A(s) | 0.0005 1077

Benchmark 1: fast reactor,
reactivity step of $0.5*

A constant reactivity of p(f) = 0.0022 is inserted
into a fast reactor. The neutron density at three time
points is presented in tab. 2. The average step size is
0.078 s. The neutron density response produced by
Rosenbrock method exactly matches the reference
value. Figure 1 shows the neutron density and delayed
neutron precursor density vs. time. Each point repre-
sents one calculated time point. At the beginning of the
positive reactivity insertion, the neutron density rap-
idly increases in a very short period of time; therefore,
the step sizes at the beginning are very small to over-
come the strong stiffness. After the initial jump, the in-
creasing speed of neutron density becomes slow, re-
sulting in large step sizes. The delayed neutron
precursor density follows the relatively same increas-
ing trend but without the initial jump. Therefore, the
main stiffness occurs in the neutron density.

Table 2. Neutron density of benchmark 1
(fast reactor, step of $0.5); CPU time: 0.002 s

t(s) Ref[’eirle ]n ce Rosenbrock | Relative error
0.1 2.075317 2.075317 0.0
1.0 2.655853 2.655853 0.0
10.0 12.74654 12.74654 0.0

Benchmark 2: thermal reactor,
reactivity step of —$0.5

In this example the reactivity driving function is
p(f) =-0.00375, which equates —$0.5 step insertion.
Table 3 shows the neutron density change, and the av-
erage step size is 0.093 s. The zero relative error indi-
cates that the relative error of the neutron density is
much lower than the predefined error tolerance. The
neutron density and delayed neutron precursor density
are displayed in fig. 2. The negative reactivity inser-
tion introduces a neutron density jump at the begin-
ning; therefore, the Rosenbrock method automatically
selects small step sizes at the start. On the other hand,
the curves of the delayed neutron precursor density are
relatively flat. Thus the main stiffness also occurs
within the neutron density.

Table 3. Neutron density of benchmark 2
(thermal reactor, step of —$0.5); CPU time: 0.002 s

t(s) Reﬁrle ]n ce Rosenbrock | Relative error
0.1 0.698925 0.698925 0.0
1.0 0.607054 0.607054 0.0
10.0 0.396078 0.396078 0.0

*

$1=4
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Figure 1. Benchmark 1:
(a) Neutron density; (b) Delayed
neutron precursor density

cm |
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Figure 2. Benchmark 2:
(a) Neutron density; (b) Delayed
neutron precursor density

Benchmark 3: thermal reactor,
reactivity step of $1

The neutron density listed in tab. 4 corresponds
to $1 step reactivity insertion into a thermal reactor,
wherep(f) = 0.0075.The average step size is 0.020 s.
The Rosenbrock neutron density is also accurate in
this strong positive reactivity step insertion test case.
Figure 3 displays the neutron density and delayed neu-

Table 4. Neutron density of benchmark 3
(thermal reactor, step of $1); CPU time: 0.002 s

tron precursor. A larger increasing slope is expected
due to the stronger step reactivity insertion. Because,
as shown with egs. (8), for stability reason, the maxi-
mum /4 growing factor is 1.5, the initial 0.01 s step size
gradually increases till the end of the integration time.

Benchmark 4: thermal reactor,
reactivity ramp of $0.1/s

The thermal reactor decay constantsA; given in tab.
1 are used for this test, but the other parameters are re-
placed with: B, = 0.000266, B, = 0.001491, B, =
=0.001316, B, = 0.002849, B5; = 0.000896, B
=0.000182,8=0.007, and A =2-10° s [2]. The reactivity
driving function is p(¢) = 0.0007 ¢. The neutron density at
five time points between 0 and 10 s is computed and
shown in tab. 5. The reference value was provided by

140
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1(s) Retﬁrle]n ce Rosenbrock | Relative error
0.1 2.515766 2.515766 0.0
0.5 10.36253 10.36253 0.0
1.0 32.18354 32.18355 3.1-107
n(H
30~
25-
20+
Figure 3. Benchmark 3:
(a) Neutron density; (b) Delayed
neutron precursor density 10- .
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Table 5. Neutron density of benchmark 4
(thermal reactor, ramp of $0.1/s); CPU time: 0.029 s

1(s) Reff;ﬁnce Rosenbrock | Relative error
2 1.338200 1.338200 0.0
4 2.228442 2.228442 0.0
6 5.582052 5.582051 -1.8-107
8 42.78630 42.78629 -2.3-107
10 451163.6 451163.6 0.0

Hermite polynomial method with the fixed step size of
0.0001 s [7]. An average step size of 0.008 s was ob-
tained with the Rosenbrock method. By examining the
relative error given in tab. 5, the Rosenbrock method
gives accurate values consistently. All relative errors are
much lower than the predefined error tolerance. The neu-
tron density and delayed neutron precursor density are
presented in fig. 4. After 5 s, when the reactivity exceeds
$0.5, the neutron density and delayed neutron precursor
density exponentially increase. The Rosenbrock method
could accurately solve this stiffness. If this benchmark is
calculated with the error tolerance of 2-107, the maxi-
mum Rosenbrock relative error is —9.7-107°, which is
lower than the maximum GRK relative error of —3.0-107
computed by 107> error tolerance. In addition, the
Rosenbrock average step size of 0.023 s is larger than the
GRK average step size of 0.020 s [2]. By comparing the
Rosenbrock CPU time with PWS CPU time 0of 3.02 s [3],
the Rosenbrock method is about a hundred times faster
than the PWS method.

Benchmark 5: fast reactor,
reactivity ramp of $1/second

A fast ramp of $1/s produces the neutron density
given in tab. 6. The stiffness is relatively strong. The
reactivity driving function is defined as p(¢) = 0.0044 1.
Figure 5 illustrates the fast increasing neutron density
and delayed neutron precursor density. After 0.5 s, this
problem appears to be very stiff. The neutron density
and delayed neutron precursor density exponentially
increase after 0.5 s. The relatively small average step
size of 0.0006 s of this case also shows that the step
size can be automatically determined based on the
stiffness of the problem. The relative error that is lower
than the predefined tolerance in tab. 6 also proves that
the Rosenbrock method gives the exact results as the
mathematical expectation.

Table 6. Neutron density of benchmark 5
(fast reactor, ramp of $1/s); CPU time: 0.03 s

«(s) Ret[’elrle ]n ce Rosenbrock | Relative error
0.5 2.136407 2.136406 —4.7-107
1.0 1207.813 1207.814 8.3-107

Benchmark 6: thermal reactor,
zigzag reactivity ramp of $1/second

A zigzag ramp reactivity is inserted into a ther-
mal reactor. The reactivity increases at the speed of
$1/s till 0.5 s, then it decreases with a slope of —$1/s

nif)

Figure 4. Benchmark 4:
(a) Neutron density;
(b) Delayed neutron

precursor density
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(b) Delayed neutron
precursor density
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from 0.5 s to 1.0 s, thereafter is followed by a ramp of
$1/sup to 1.5 s again. From there, it maintains the con-
stant at $0.5. The reactivity driving function is

00075t 0<t <05

) ~0.0075(¢ —05)+ 000375 05<¢<1
00075(1—1) 1<t<L5
000375 15<¢<10

The neutron density at five sample time points is
shown in tab. 7. The average step size is 0.05 s. Ac-
cording to all zero relative errors in tab. 7, the
Rosenbrock method provides accurate results. The
neutron density, reactivity driving function, and de-
layed neutron precursor density profiles are shown in
fig. 6. The zigzag reactivity ramp brings fluctuation to
the neutron density profile whose curve shape follows
the reactivity driving function, but the relative magni-
tude of the response of the delayed neutron precursor
density to the zigzag reactivity ramp is relatively
small.

Compared to Padé and SCM maximum relative
error of 6:10~* calculated with the fixed 0.01s step size
[1], the Rosenbrock method has much better perfor-
mance, because it could achieve much higher accuracy
with a quite large average step size. If this benchmark
is calculated by the Rosenbrock method with the fixed
step size of 0.03 s, the maximum relative error is
8.3-107° which is still lower than the maximum rela-
tive error of 9.5-10° computed by the GRK method
with the fixed step size 0.01 s [2]

=107

plt) o

Figure 6. Benchmark 6:

(a) Neutron density and
reactivity; (b) Delayed neutron
precursor density

Table 7. Neutron density of benchmark 6
(thermal reactor, zigzag ramp of $1/s); CPU time: 0.004 s

1(s) Reference [11] Rosenbrock | Relative error
0.5 1.721422 1.721422 0.0
1.0 1.211127 1.211127 0.0
1.5 1.892226 1.892226 0.0
2.0 2.521601 2.521601 0.0
10.0 12.04711 12.04711 0.0

Benchmark 7: sinusoidal reactivity

This example demonstrates the neutron density
response to a sinusoidal reactivity oscillation. The
one group calculation parameters are f =0.0079,4 =
= 0.077 s, and A = 1078 s. The reactivity driving
function is

(T
t)=0.005333sin| — ¢
p(t) ( 50 j

The total CPU time is 0.025 s. The calculation
was performed for one period (0-100 s). The n(?), p(t),
and Cj(¢) are shown in fig. 7. This neutron density
curve exactly matches the prompt jump approximation
(PJA) solutions provided by [12]. The one group de-
layed neutron precursor density curve has the similar
shape, but the peak is delayed approximately 10's. The
PJA maximum response value is 61.4963 [2], while
the Rosenbrock maximum neutron density is 61.4964
calculated with the average step size of 0.083 s. The
peak neutron density of the Rosenbrock method is
much closer to the PJA analytic solution than the GRK
result, 61.509 [2].
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DISCUSSION

The relative error that is lower than the prede-
fined criteria in all first six test cases proves that the
Rosenbrock method could solve the point kinetics
equations with sufficient accuracy. From the compari-
sons between the Rosenbrock and GRK for
benchmarks 4, 6, and 7, it is shown that the
Rosenbrock method gives more accurate results with
fewer calculation steps, which means that the
Rosenbrock method has better accuracy and stability
than the GRK method. The CPU time for all these
benchmarks is quite short; the maximum time was
only 0.03 s; on average, 2-107 s is needed to advance
to the next time step. Therefore, the computation bur-
den of the Rosenbrock method in solving point kinet-
ics equations is negligible. Moreover, the implementa-
tion of this method is relatively simple. In order to
develop a general code that could handle arbitrary de-
layed neutron group structure and reduce the coding
work, inverting the LHS matrix in eq. (2) is not recom-
mended, although it may save some calculation time.
The numerical solution presented in this paper shows
to be directly applicable in solving the point kinetics
with any p(?) , as long as the derivatives of p() are ana-
lytic. Otherwise, numerical differencing subroutine is
needed.

CONCLUSION

This paper presents the fourth order Rosenbrock
method applied to solve the reactor point kinetics
equations. From the presented various benchmark
tests, it can be concluded that the Rosenbrock algo-
rithm exhibits high efficiency, high accuracy and sta-
ble features. By adopting the automatic step size con-
trol, the users do not have to determine the step size.
The developed numerical code can automatically out-
put the results with the desired accuracy.

The developed program has become a part of the
interactive web-based course module for reactor phys-
ics teaching at the undergraduate level [13]. It will as-
sist the students to understand and solve the neutron
density response of different point kinetics models.
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APPENDIX

Flowchart of FORTRAN90 Rosenbrock Methodology for Reactor Point Kinetics
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output file
N
v

Save current ¢ and ¥
Compute the following matrices or vectors|
fiy.fLeq. (10
Yscale, €9 (5)
cfey eq. (11)
aféreq. (12)
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| Build LHS matrix of eq.@)

| LU decompose above matrix |
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Assume that the reactivity
is a piecewise function and
the user wants the results
at multiple time points
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disjoint points of the time
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piecewise function and the
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Illye JAHI, Tarjana JEBPEMOBUWh

PO3EHBPOKOBO HYMEPUYKO PEHIEIbE KMHETUYKE JEJHAYWHE
PEAKTOPA CA INIPUMEPUMA

Y oBoMm papy ommucana je Po3eHOpoKoBa MeTOa IETBPTOT pefla ca ayTOMaTCKOM KOHTPOJIOM
BEeJIMUMHE MHTEPBaia U HheHa IPUMEHA y pelllaBakhy KMHETUKE HyKIIeapHUX peakTopa. Ha ocHOBY oBe
METOfIe Pa3BHUjcH je HyYMEpUUIKHU IPOTrpaM 3acHOBaH Ha pauyHapckoM je3uky POPTPAH 90 u rectupanu cy
BberoBa Op3mHa M TavyHOCT. [IpwKa3zaHO je BUIlEe NMpUMeEpa KOjU YKIbY4yjy Pa3INddT THUI TPOMEHE
PEaKTUBHOCTH peakTopa. Y CBIM TECTOBMMA, OMICaHa IPOIeypa pelleha KHHETHKE PEaKTOpa Ha OCHOBY
Po3enOpokoBe MeTolle moKa3aja je BUCOKY TAUHOCT, a HYMEPHUYKY IPOrpaM U3y3eTHY Op3uHy pelietha.

Kwyune peuu: kuneitiuka peaxitiopa, Pozenbpoxosa meitiooa, @OPTPAH 90




