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We apply the concept of convergence acceleration, also known as extrapolation, to find
the solution of the reactor kinetics equations (RKEs). The method features simplicity in
that an approximate finite difference formulation is constructed and converged to high
accuracy from knowledge of the error term. Through the Romberg extrapolation, we
demonstrate its high accuracy for a variety of imposed reactivity insertions found in the
literature. The unique feature of the proposed algorithm, called RKE/R (omberg), is
that no special attention is given to the stiffness of the RKEs. Finally, because of its sim-
plicity and accuracy, the RKE/R algorithm is arguably the most efficient numerical solu-

tion of the RKEs developed to date.
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INTRODUCTION

An ever popular numerical pastime over the past
40 years has been the development of numerical solu-
tions to the equations of nuclear reactor kinetics (RKEs).
One need only survey the literature to find articles with
titles such as — 4 New Solution...[1], Resolution of the
Stiffness...[2], Generalized Runge-Kutta Methods. . .[3],
Efficient Numerical Solution of...[4], On Pade Approxi-
mations...[5], COnstant REactivity: A Numerical Algo-
rithm...[6], Revisiting the Rosenbrock Numerical Solu-
tions...[7], An Efficient Code System...[8], and
references to additional proposed algorithms (See
[1-15]). Apparently, many of the proposed algorithms
are constructed specifically to treat the stability and stiff-
ness of the RKEs. All of us in the nuclear community
have been particularly sensitized to the notion that these
equations are stiff, which, of course, is a consequence of
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the prompt neutron generation time being orders of mag-
nitude less than the time for delayed neutrons to appear.
While this is certainly of concern, in general, it has lead to
an unnecessary preoccupation with stiffness and stabil-
ity. We see this in the creation of ad-hoc time step con-
trols and change of dependent variables attempting to
compensate for stiffness. Such considerations have made
previous algorithms more complicated than necessary
and, as a result, classroom unfriendly, except perhaps at
the advanced level.

The theme of this presentation is simplicity and
it is dedicated to answering the question: Can an ele-
mentary finite difference scheme give a highly accu-
rate numerical solution to the RKEs? In this respect,
we consider high accuracy to be at least five signifi-
cant figures. As will be shown, our approach, which
does not explicitly consider stiffness, is an efficient
way to define highly accurate numerical solutions to
ODESs. We substantiate this claim through exhaustive
comparison to the benchmarks found in literature. In
this way, we hope to achieve a goal of “sustainable ac-
curacy”— that is, uniformly high accuracy regardless
of application. To accomplish this, we first admit that
discretization error is a natural element of the solution.
We then show how to manage this error in a way that
generates a reliable and robust algorithm.

Please note that, because of space limitation, we
consider only imposed reactivity insertions and leave
the issue of temperature feedback to a future effort.
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THE EQUATIONS OF A; =A(t;) (3b)
POINT KINETICS q;=q(t))

We begin with the following inhomogeneous,
6-delayed group point kinetics equations (in usual no-
tation):

O sty () (La)
with vectors
N () a(t)
yr=| O g2 ° (1b)
Colt) o

and Jacobian matrix
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We solve eq. (1a), subject to initial conditions,
normalized to a neutron density of one at time zero

»(0)=| 4 (1d)

In our formulation, the reactivity, pg(f), mea-
sured in units of $’s, will be prescribed.

DEVELOPMENT OF A SIMPLE FORWARD
FINITE DIFFERENCE SCHEME

Equation (1a) is discretized by integrating over
the time interval (4, ti1]

Ljsa Ljs1
Wty ) =30t )= [dPAG )+ [deg (1) (2)
4 4
We assume a uniform interval, = ¢ . |— ¢ over the total
time of the domain of interest. After the application of
the trapezoidal rule approximation for the integrals in
eq. (2), the following two-point discretization emerges:

h h h
{I_zAﬂ‘ }y,ﬂ :{HzA’}y" eyl

(3a)
where

and I is the unit matrix. In eq. (3a), we have replaced
the exact solution y () with the approximate solution y;
where

W)=y, +e; (4)

and e; is the error vector of the approximate solution.
The finite difference scheme of eq. (3a) serves as the
heart of the development to follow. Note that a matrix
inversion is required for the solution of eq. (3a) at each
time step which we chose to do by the LU decomposi-
tion. An alternative analytical inversion is possible us-
ing the procedure developed in ref. [1]; however, the
efficiency of the LU decomposition is sufficient for all
benchmarks considered.

Error term
In the scheme to follow, it is important to deter-

mine the form of the error vector ;. To accomplish this,
we integrate eq. (1a) over the interval [0, 7] to give

(e, )= p(0)= [drA( (e )+ [de'q(e')  (5)
0 0

We then sum eq. (3a) over to j-1

hoizl
Yi=Yo=7 > [Aj'+lyj’+1 _Aj’yj’]+
2 j=0
h i (©)
+§j§0[‘1_,"+1 —q ;]
If
4
I(f0,t;)=[dt’f(¢") (7a)
0

and the trapezoidal rule is

hjzl
T(f0,t,)=— X [fj'+1+fj'] (7b)
2 j=0
then, from the Euler-Maclaurin sum formula [16]

__ L Qk-1) _ 2Qk-1) 2%
: ;(22")![/' ()= On* g

In this equation, By is the Bernoulli number of order
2k. Subtracting egs. (5) and (6), and noting that y(0) =
= yo, we find

wt;)=y; =1(Ay,0,1;)-T(Ay,0,¢; )+
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and with eq. (8)

€= _g (ijck)! {[(A.V)(zkfl) ()= (Ay)(Zkil) (0)1+
gD (2 )-q D 0130 ©)

Hence, the error term is formally of the form

= 2k
e; —]El ajkh
and the exact solution is
We;)=y; +1§1 ayh* (10)

The particular form of the error term indicates that
the finite difference scheme is of second order. In addi-
tion, it suggests the application of the Romberg conver-
gence acceleration [17]. In this algorithm, error orders,
K, k=1, 2, ..., are sequentially eliminated by halving
the interval 4 with each grid refinement representing a
discretized solution of eq. (1a) through eq. (3a). Thus,
rather than choose a single discretization to be suffi-
ciently accurate by some ad-hoc measure, we consider a
series of discretizations in a systematic way to give a so-
lution that, in principle, extrapolates to zero descreti-
zation. The solution, therefore, is now a sequence of so-
lutions tending toward their limit of zero discretization.
Therefore, in applying the Romberg acceleration, no
longer will just one discretization be the desired solu-
tion, since the solution now becomes an extrapolation
of a sequence of solutions on a prescribed path in the
discretized time domain. This procedure gives a new
definition to the numerical solution of the RKEs.

ROMBERG ACCELERATION

As indicated above, the Romberg acceleration
[17] uses the known form of the error series in eq. (10)
to sequentially eliminate higher order error terms. For
example, we can write eq. (10) as

W)=y o+ Tagoh®™ (A1)

where y; (%) is the original finite difference approxima-
tion y;(h) fromeq. (3a), and j now refers to the time ¢ on
the initial grid configuration initiated by eq. (1d). Then,
eliminating the first term of the error series by consider-
ing y; () and the same edit on a grid of half'the original
interval, y;o(//2), simultaneously, one finds

22y,,o<h/2>—y,~,o(h)] 1)

yj,l(h)E[ 2

as the next highest order approximation. The flux rep-
resentation for this new approximation becomes

W=y (+ X ay ™ (13)
Continuing to eliminate higher orders in this

fashion, sequentially, gives the following recurrence
relation for increasingly higher order approximations:

Yiolh)=y;(h)

22m ) h!2)—v. h
yj,m—l( ) yj,mfl( ) m=12,...,

. (h)=
Yim(h) o i

and the solution at the original edit, which is now 5,";
in the refined grid, becomes

Y=y, M+ X ay ki (15)
k=m+1
It should be apparent that the Romberg conver-
gence acceleration applies only to the original time
edit which each grid refinement inherits. One way to
ensure this is to perform the grid refinement between
the requested time edits.
The Romberg acceleration requires that one gen-
erate the following sequence of finite difference ap-
proximations from eq. (3a):

yioh/2™), m=0,12,..., (16)

so as to give the Romberg sequence for the recurrence
ofeq. (14). The Romberg acceleration, therefore, rear-
ranges the original sequence into a more efficiently
convergent one. To test for convergence, we therefore
have the choice of the original sequence

o (B12™)y =y o (k2™
eozmax‘yj’o’[ ( ) yj’o’”i( )‘ <e (17a)
| V00 (h12") |

or the Romberg sequence

it W) =y @]

e = max‘ Ym0 ‘ (17b)

Note that we base convergence on the worst rela-
tive error of the seven components of y at a desired
edit.

A DEMONSTRATION

The evaluation procedure, say for the edit ¢,, be-
gins with subdividing the interval [0, ¢, ] into four equal
sub-intervals. Then the recurrence given by eq. (3a) is
initially applied to this partition. The grid between the
subdivisions is refined by two, until either eq. (17a) or
(17b) is satisfied at the edit #, only. Note that none of
the times between [0, ¢,) are accelerated. For the next
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edit, say #,, the converged solution at edit ¢, serves as
the initial condition for the next interval, [¢, t,], for
which the scheme of eq. (3a) again applies. The evalu-
ation in this interval is complete when either of eqs.
(17) are satisfied for edit #,. In this way, we cover all
edits sequentially. The application of eq. (3a) acceler-
ated by eq. (14) until either of eqs. (17) are satisfied is
called the RKE/R(omberg) algorithm, which we now
demonstrate through consideration of several bench-
mark series.

In the demonstrations to follow, error tolerance in
egs. (17) is case dependent and varies between 10* and
1077, unless otherwise indicated”. The coding of the
RKE/R algorithm is a mixed FORTRAN/77-95. All com-
putational times are relative to a Gateway, 1.2 GHz laptop.

Benchmark series 1: step reactivity insertion

For this benchmark series, only step reactivity
insertions are considered. The RKE/R method results
are compared to well established benchmarks.

B1.1: reactivity insertion of $0.5 into
fast reactor I, refs. [1] and [7]

The first benchmark considered is for a step re-
activity insertion of $0.5 into a fast reactor. The neu-
tron generation time is A = 10~’s and the kinetics pa-
rameters given in tab. 1.

Table 1. Kinetics parameters for
fast reactor I

B =0.0044

i Bi Ails]
1 0.0001672 0.0129
2 0.001232 0.0311
3 0.0009504 0.134
4 0.001443 0.331
5 0.0004534 1.26

6 0.000154 3.21

Table B1.1.1 gives the neutron density from the
difference equation at the last grid refinement and the
converged neutron density for which 3 edits are
requested. In addition, the relative error between the
difference and converged densities, the number of
discretizations per interval (No of dis.) between edits
and the final number of Romberg iterations (Level) are
given. The converged densities agree to all of the dig-
its of the reference solution [ 1] and with the (revisited)
Rosenbrock solution of ref. [7], which is one of the
most accurate of recent solutions. Itis curious that the
origin of the accepted reference solution first quoted in

* In this way, the RKE/R method is comparable to the Rosenbrock
algorithm of ref. 7, with regard to the average time step as
required by the reviewers

Table B1.1.1. Step insertion of $0.5 into fast reactor I

Relative No of]
.~ |Level
error | dis.

t[s] Difference | Converged

1.00E-01{2.075317E+00|2.075317E+00|0.00E+00| 256 | 6
1.00E+00| 2.655861E+00 |2.655853E+00| 2.96E-06 | 32 3
1.00E+01] 1.274724E+01 | 1.274654E+01| 5.52E-05 | 64 4

[1] is unknown and, reassuring that the RKE/R and
Rosenbrock algorithms both confirm. We also point
out that, for the last two edits, the converged solution
is, at least, two digits more accurate (when rounded)
than the original difference solution (Difference). This
is quite remarkable when one considers that the con-
verged solution is simply a linear combination of finite
difference solutions on increasingly refined grids.
Figure 1(a) shows a plot of the unaccelerated
neutron density given by the finite difference scheme
on the last grid refinement. As one might anticipate,
because of the step reactivity jump, the finite differ-
ence solution initially oscillates as the derivative at-
tempts to accommodate the abrupt change — observed
as the overshoot near the initial time. Atthe same time,
however, since the first desired edit is many neutron
generations away from transient initiation, the con-
verged solution is not affected, indicating a stable al-
gorithm. Poor accommodation is also indicated by the
relatively large number of discretizations (256)
required for convergence in the first interval.
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Figure 1. Benchmark B1.1: step insertion $0.5
(a) 3 edits; (b) 7 edits
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A particularly appealing feature of the RKE/R
algorithm is that it can naturally eliminate oscillations
at early times, just through input. This is accomplished
by including edits on the order of the neutron genera-
tion time. The densities for four additional edits (¢ =
=10"s,r=8,6,4,2),included before the first desired
edit(0.1s), are given in tab. B1.1.2. Note that the num-
ber of discretizations in the first interval is now only 8.
The reduction affects the average (calculational) time
step to achieve the converged numerical solution,
which is the overall time interval of interest divided by
the total number of discretizations on the final grid of
the converged solution. The average time step is a
measure of computational effort used for comparison
with other algorithms. For the results of tab. B1.1.1,
the average time step is 0.028 s, while by simply add-
ing edits at 10”7 s and 1073 s, the average time step in-
creases to 0.096 s. For the achieved accuracy, this is
comparable to most algorithms, including at least one
with a time step control [7]. However, in this author’s
opinion, the additional effort required and the compli-
cation engendered in an approximate time step con-
trol, as enforced in ref. [7], is not worth the savings. In
this work, we do not consider optimizing the time step,
but rather accept it as a natural part of the solution
which we manipulate to gain accuracy and at the same
time maintain algorithmic simplicity.

Finally, observing fig. 1(b), we note that the inclu-
sion of additional edits has eliminated the overshoot.

Table B1.1.2. Step insertion of $0.5 into fast reactor I

Relative | No of]
error | dis.

t[s] Difference | Converged Level

Table 2. Kinetics parameters for
thermal reactor I

B =0.0075
i Bi Ails]
1 0.000285 0.0127
2 0.0015975 | 0.0317
3 0.00141 0.115
4 0.0030525 | 0.311
5 0.00096 1.40
6 0.000195 3.87

Table B1.2. Step insertion of $0.5 into thermal reactor I
t[s] Difference No of dis.

Converged

1.00E+00 | 2.511520E+00 | 2.511494E+00 32
5.00E+00 | 5.753564E+00 | 5.753393E+00 32
1.00E+01 | 1.421578E+01 | 1.421503E+01 32

B1.3: reactivity insertion of —80.5 into
thermal reactor I, refs. [1],[5], and [7]

The next benchmark is for a step reactivity inser-
tion of —$0.5 into a thermal reactor whose kinetics pa-
rameters are given in tab. 2 and the neutron generation
time is A = 5-10~* s (tab. B 1.3).

All digits agree (when rounded) to what seems to
be the most accurate reference solution given in refs.
[17, [5], and [7], except for the one density highlighted
which is off by one unit in the last place. The average
time step is 0.125 s, which is larger than the “optimized”
time step of 0.093 s of the Rosenbrock algorithm [7].
The computational time for this case is about 0.016 s.

1.00E-08
1.00E-06
1.00E-04
1.00E-02
1.00E-01
1.00E+00
1.00E+01

1.000220E+00
1.021760E+00
1.889314E+00
2.007681E+00
2.075317E+00
2.655861E+00
1.274724E+01

1.000220E+00
1.021760E+00
1.889220E+00
2.007681E+00
2.075317E+00
2.655853E+00
1.274654E+01

0.00E+00)
0.00E+00)
4.93E-05
1.00E+00
1.27E-07
2.96E-06
5.52E-05

8
8
32
64
16
32
64

AW A W——

Table B1.3. Step insertion of -$0.5 into thermal reactor I

t [s] Difference Converged No of dis.
1.00E-01 | 6.988932E-01 | 6.989252E-01 32
1.00E+00 | 6.070532E-01 | 6.070536E-01 64
5.00E+00 | 4.825523E-01 | 4.825530E-01 64
1.00E+01 | 3.960759E-01 | 3.960777E-01 31

The computational time in both cases is less than
0.016 s. Hence, with additional (converged) edits, we
obtain increased accuracy with little additional com-
putational effort.

B1.2: reactivity insertion of $0.5 into
thermal reactor I, ref. [5]

Reference [5] contains a benchmark for the same
insertion into a thermal reactor with nuclear properties
of tab. 2 and the resulting densities given in tab. B1.2.
Here, the neutron generation time is A = 1073s.

All values agree to all digits of the reference so-
lution. Even though the average time step of 0.1 s is
less than that of ref. [5] (0.25 s), no eigenvalues need
be found, making the RKE/R solution, overall, that
much more convenient.

B1.4: reactivity insertion of $1 into
thermal reactor I, refs. [1] and [7]

Another benchmark in this series comes from
refs. [1] and [7], and represents a stronger insertion
than the benchmarks so far. Again, we consider ther-
mal reactor I (tab. 2) for a prompt critical insertion.
The results, shown in tab. B1.4, confirm the last digit
of'the reference solution at edit 1 s to be correct relative
to the Rosenbrock algorithm [7] (which is within its
desired error). Also, the RKE/R algorithm outper-
forms the algorithm of ref. [1] with an average time

Table B1.4. Step insertion of $1 for thermal reactor I

t[s] Difference Converged No of dis.
1.00E-01 | 2.515795E+00 | 2.515766E+00 16
5.00E-01 | 1.036488E+01 | 1.036253E+01 16
1.00E+00 | 3.218645E+01 | 3.218354E+01 32




162

Nuclear Technology & Radiation Protection — 3/2009

step of 0.02 s. The average time step is the same as for
the Rosenbrock algorithm.

B1.5: reactivity insertion of 0.003, 0.0055,
0.007, and 0.008 into thermal reactor 11,

refs. [2],[3], and [4]

We consider a fifth set of benchmarks, for
sub-prompt critical step reactivity insertions of 0.003
($0.4286),0.055 ($0.7857), a prompt critical insertion
of $1 and a super-prompt critical insertion of 0.008
($1.1429) into the thermal reactor I whose kinetics
parameters are given in tab. 3. The neutron generation
timeisA =2-107s. The last insertion represents a true
test of the RKE/R scheme, since the neutron density is
predicted to increase by 23 orders of magnitudein 1 s.

Table 3. Kinetics parameters for
thermal reactor I1

B =0.007

i Bi Ai[s7]
1 0.000266 0.0127
2 0.001491 0.0317
3 0.001316 0.115
4 0.002849 0.311
5 0.000896 1.40

6 0.000182 3.87

Tables B1.5(a)-(d) give the neutron densities for
all four cases. Compared to the published reference so-
lution found in ref. [2], we observe that the RKE/R den-
sities agree to all (four) digits when rounded, except for
the three highlighted which disagree to one unit in the
fourth place. The question which is the correct refer-
ence solution (RKE/R orref. [2]) needs to be addressed.
Arguably, all investigations indicate that the RKE/R
values are correct to one digit in the last place and that,
therefore, one should consider the RKE/R algorithm to
be the reference solution. In any case, the RKE/R algo-
rithm easily outperforms the algorithms of refs. [2] and
[3] in accuracy and is on a par (for 4-digits only) with
that of ref. [4]. Note the relatively large number of
discretizations required for the super-prompt case. This
reflects the relatively short average time step. The
RKE/R method, as indicated above, allows one to, if de-
sired, increase the average time step by including more
converged edits within the total interval. In particular,
we double the average time step with little increase in
computational time by adding 10 edits where the den-
sity variation is the greatest.

For completeness, we indicate the average time
steps and computational times in tab. 4.

Table 4. Average time steps for benchmark B1.5

Case Average time step [s] Teompt [8]
a 0.057 0.02
b 0.016 0.02
c 0.0026 0.02
d 0.00024 0.11

Table B1.5a. Step insertion of 0.003 into thermal reactor

I
t[s] Difference Converged No of dis.
1.00E+01 | 2.209841E+00 | 2.209840E-+00 256
1.00E+01 | 8.019434E+00 | 8.019200E+00 64
2.00E+00 | 2.830177E+01 | 2.829740E+01 32
Table B1.5b. Step insertion of 0.0055 into thermal reactor
11
t[s] Difference Converged No of dis.
1.00E-01 | 5.210043E+00 | 5.210028E+00 64
2.00E+00 | 4.303139E+01 | 4.302514E+01 64
1.00E+01 | 1.388834E+05 | 1.388602E+05 512
Table B1.5c¢. Step insertion of 0.007 into thermal reactor
II
t [s] Difference Converged No of dis.
1.0000E-02| 4.508927E+00 | 4.508858E+00 8
5.0000E-01| 5.347151E+03 | 5.345888E+03 256
2.0000E+00| 2.062648E+11 | 2.059156E+11 512
Table B1.5d. Step insertion of 0.008 into thermal reactor
II
t [s] Difference Converged No of dis.
1.0000E-02| 6.203439E+00 | 6.202854E+00 16
1.0000E-01| 1.411195E+03 | 1.410422E+03 128
1.0000E+00| 6.166620E+23 | 6.163334E+23 4096

B1.6: reactivity insertion of 0.003, —0.007,
and 0.007 into thermal reactor I, ref. [9]

In this series, we include a benchmark from ref.
[9] for thermal reactor II of tab. 3 and a generation time
of A = 2-10*s. While we have considered some of
these insertions above, here they will be for different

Table B1.6a. Step insertion of 0.003 into thermal reactor

I

t[s] Referent sol. Converged No of dis.
2.00E-01 | 1.851268E+00 | 1.851268E-+00 128
4.00E-01 | 1.947593E+00 | 1.947593E+00 16
6.00E-01 | 2.037922E+00 | 2.037922E+00 16
8.00E-01 | 2.124832E+00 | 2.124835E+00 16
1.00E+00 | 2.209841E+00 | 2.209840E+00 16

Table B1.6b. Step insertion of -0.007 into thermal reactor

I
t[s] Referent sol. Converged No of dis.
2.00E-01 | 4.809743E-01 | 4.809732E-01 128
4.00E-01 | 4.652903E-01 | 4.652893E-01 16
6.00E-01 | 4.519650E-01 | 4.519640E-01 16
8.00E-01 | 4.402732E-01 | 4.402723E-01 16
1.00E+00 | 4.297830E-01 | 4.297820E-01 16

Table B1.6c¢. Step insertion of 0.007 into thermal reactor

11
t [s] Referent sol. Converged No of dis.
2.00E-01 | 1.597257E+02 | 1.597258E+02 64
4.00E-01 | 1.667286E+03 | 1.667288E-+03 64
6.00E-01 | 1.713190E+04 | 1.713193E+04 64
8.00E-01 | 1.758905E+05 | 1.758910E+05 64
1.00E+00 | 1.805726E+06 | 1.805732E+06 64
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time edits. Tables B1.6(a)-(c) give the RKE/R and the
reference solution quoted in ref. [9]. Discrepancies in
the reference solution (Hermite polynomial algo-
rithm) and RKE/R are quite apparent.

The discrepant digits are highlighted. Again, we
conjecture that the RKE/R densities are the more accu-
rate of the two.

In contrast, the (analytical) reference solution
for the one delayed group benchmark of ref. [9]
matches exactly all 8 figures, as given in tab. B1.6d.

Table B1.6d. Step insertion of 0.0022 into a one group
(B =0.0065, /. = 0.08 s") fast reactor I

t[s] Difference Converged |No of dis.
1.0000E+00 | 1.5747825E+00 |1.5747825E+00| 2560
1.0000E+01 | 2.2761600E+00 |2.2761585E+00 80
1.0000E+02 | 9.0592534E+01 |9.0577793E+01 160

Since the neutrons regenerate so quickly (A =
=10"*s), this case provides an excellent example of
how the RKE/R algorithm overcomes the initial oscil-
lations, as shown in fig. 2(a). If we introduce addi-
tional edit points in decades from 10 to 107 s, we
eliminate the oscillations, as shown in fig. 2(b). The
increase in computation time is negligible.

Neutron density
S

10 1070 102 10" 10° 10’ 10?2 10°

(b)

Neutron density
=
P
L

OA
L

B1.7: various reactivity insertions into
thermal reactor I, refs. [8] and [10]

We conclude the series of step reactivity inser-
tions with relative small insertions into the thermal re-
actor III, with kinetics parameters given in tab. 5 and
A=10"s.

Table 5. Kinetics parameters for
thermal reactor IIT

B =0.0064

i Bi Ails7]
1 0.000211 0.0124
2 0.001402 0.0305
3 0.001254 0.115
4 0.002528 0.301
5 0.000736 1.138
6 0.000269 3.01

The reference solution comes fromref. [10]. As
observed from tab. B1.7, the RKE/R solution agrees
with the analytical solution and gives one more digit
for reference purposes.

Table B1.7. Various step insertions into thermal reactor
I

t[s] 1ol Converged
0.01 6.4-1077 1.0000473E+00
0.1 6.4-10¢ 1.0010263E+00
0.175 1.12:10° 1.0018483E+00
0.35 2.24-10°5 1.0039083E+00

Benchmark series 2: ramp reactivity insertion

In this benchmark series, reactivity is inserted
linearly, p(t) =p, + at.

B2.1: ramp reactivity insertion rate $0.1/s
into thermal reactor I, refs.[2], [3],

[4]. 6], [7], [9]., [10], and [12]

We begin this series with one of the more popu-
lar benchmarks found in literature. This is a $ 0.1/s
ramp (p, = 0) into the thermal reactor I with neutron
generation time A = 5-107 s.

The results, shown in tab. B2.1, are nearly in
complete agreement with what seems to be the ac-

Table B2.1. Ramp insertion of $0.1 into thermal reactor I

Figure 2. Benchmark B1.6d:
(a) 3 edits, (b) 10 edits

fs] Difference Converged |No of dis.
2.0000E+00 | 1.338200E+00 | 1.338200E+00 128
4.0000E+00 | 2.228485E+00 | 2.228442E+00 32
6.0000E+00 | 5.582592E+00 | 5.582053E+00 32
8.0000E+00 | 4.279758E+01 | 4.278630E+01 64
1.0000E+01 | 4.514887E+05 | 4.511636E+05 512
1.1000E+01 | 1.792953E+16 | 1.792214E+16 | 2048
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cepted reference solution [9]. Only one value in the
sixth place is discrepant (highlighted). The RKE/R
density is, however, confirmed in ref. [12]. We also
confirm the reference solution of ref. [7] at t=8 s. The
average time step for this calculation is 0.004 s and the
time of computation is 0.063 s. If the last time edit is
not included, then the average time step is 0.012 s, as
compared to 0.008 s of ref. 7.

B2.2: ramp reactivity insertion rate $1/s
in fast reactor I, refs. [1] and [7]

The last ramp benchmark is for $1/s into the fast
reactor I with a neutron generation time of A = 107s.
As seen from tab. B2.2, we confirm the reference solu-
tion to only five places. The average time step is
0.0009 s, again larger than in ref. 7, while the time of
computation is about 0.016 s.

Table B2.2. Ramp insertion of $1 in fast reactor I
t[s] Referent sol. No of dis.

5.0000E-01 |2.136407E+00/2.136409E+00 512
1.0000E+00 |1.207813E+03|1.207814E+03 2048

Converged

Benchmark series 3: specifically
induced transients

The final series concerns expressly crafted reac-
tivity insertions with non-uniform insertion rates.

B3.1: zigzag reactivity insertion,

refs. [1],[2],[3].[5], and [7]

The zigzag reactivity insertion is also popular
for proposed benchmarking methods. The zigzag re-
activity is the following function of time,

0.0075¢ 0<1<05

(1= | ~00075(1~05)+ 000375 05 </ <]

PUEI=Y00075(2 1) 1<1<15
000375 15<¢

The reactivity insertion is for thermal reactor I
with a neutron generation time of A =5-10"s. The re-
sults are given in tab. B3.1. Again, RKE/R gives the ref-
erence solution for an average time step 0f 0.052 s and a
computation time of 0.031 s.

Table B3.1. Zigzag insertion for thermal reactor I

t [s] Difference Converged |No of dis.
5.0000E-01 | 1.721483E+00 | 1.721422E+00 32
1.0000E+00 | 1.211149E+00 | 1.211127E+00 32
1.5000E+00 | 1.892280E+00 | 1.892226E-+00 32
2.0000E+01 | 2.521628E+00 | 2.521601E+00 32
1.0000E+01 | 1.204777E+01 | 1.204711E+01 64

B3.2: sinusoidal reactivity insertion,

refs. [2.[3].[4].[5]1.[71.[8], and [9]

In the last benchmark, we consider the following
sinusoidal reactivity variation [13]

8p

8+AT

p(t)= sin(7t/T)
for a fast reactor with one delayed group. In this case
B =0.0079, 2 =0.077 s, and A =10 5.

This is the simplest example of an imposed
self-limiting reactivity where the power oscillates in
time, experiencing a steady average increase, as
shown in fig. 3 for four half periods 7.

For this benchmark, we only verify the analyti-
cal results quoted in ref. [ 14] for the time of occurrence
specified for the first density peak and its value. The
results shown in tab. B3.2 are nearly in complete
agreement with the reference solution, except in the
fourth place of the highlighted entry. The average time
step in this case is 0.3 s.
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Figure 3. Benchmark B3.2: sinusoidal insertion for vari-

ous periods

Table B3.2. Sinusoidal insertion for a one group fast
reactor

Half period T [s7!] t[s] Converged
50 3.9108E+01 6.15339E+01
150 1.3732E+02 9.58190E+01
250 2.3712E+02 1.13458E+02
350 3.3707E+02 1.23820E+02
DISCUSSION

We have demonstrated the solution of RKEs via
a second order finite difference algorithm enhanced
through the Romberg acceleration. The RKE/R algo-
rithm has been benchmarked against nearly every ma-
jor benchmark for imposed reactivity insertion of
which this author is aware. We have reproduced most
reference solutions and there is indication that, when
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they differ, the RKE/R solution is likely to be the most
accurate one. The applications covered step and ramp
insertions, as well as zigzag and sinusoidal insertions.
All of the results obtained required minimal compu-
tational effort, with computing times generally under
0.2 s. Notably, the RKE/R algorithm performance is
comparable to the Rosenbrock algorithm [7] in com-
putational effort. However, when the two algorithms
are compared with respect to simplicity and ease of
use, the RKE/R wins without question which, to this
author, is the most important measure of pedagogical
intent. The (revisited) Rosenbrock algorithm of ref.
[7] requires 26 parameters to be specified, including a
specialized time stepping procedure which, one might
suspect, might not be as efficient in all anticipated
cases. Only the finite difference forms of eq. (3) and
the Romberg acceleration of eq. (14) are required for
the RKE/R, with no need to determine any parameters.
One could only imagine that teaching and learning the
RKE/R algorithm is generally easier than is the case
with other algorithms, but all algorithms should be
taught, if possible.

The RKE/R algorithm’s most outstanding feature
is its simplicity. No special consideration of stiffness is
required —no series expansions in either polynomials or
exponentials, no approximations of the exponential, no
determination of eigenvalues. While the author would
like to take credit for the RKE/R algorithm, he cannot
do so, as it was first proposed by Izumi and Noda [18] in
1970. However, from then on, it seems not to have un-
dergone any further development. Had this been the
case, the RKE/R algorithm would almost certainly have
emerged as the method of our choice today.

To conclude and further emphasize the superiority
of the RKE/R algorithm, we will consider one final case.

If the converged solution is indeed accurate, it
can be used to reliably estimate the order of the finite
difference approximation. To verify this, we use the
simple one-group benchmark devised by Kinard and
Allen [4]. Inthiscase, =1, A=1s,andA=1s",
with reactivity insertion . Neutron density is given in
tab. 6, where p is the estimate of the order of the differ-
ence scheme of eq. (3a). As observed, we have indeed
captured the order to five places, exactly; however, the
density has converged well before to ten-places. How-
ever, quadruple precision arithmetic is required to ob-
tain the indicated order.

Table 6. Kinard and Allen benchmark

h n p
2.500E-01 4.5119376409E+00 2.14800E+00
1.250E-01 4.5280399694E+00 2.03467E+00
6.250E-02 4.5279110538E+00 2.00853E+00
3.125E-02 4.5279113100E+00 2.00213E+00
1.562E-02 4.5279113099E+00 2.00053E+00
7.812E-03 4.5279113099E+00 2.00013E+00
3.906E-03 4.5279113099E+00 2.00003E+00
1.953E-03 4.5279113099E+00 2.00001E+00
9.766E-04 4.5279113099E+00 2.00000E+00

There is no question that the RKE/R algorithm is
the high order method we have been searching for over
the past 40 years.
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bapu 1. TAHAIIOJ

YCABPHIEH HAYMH PEIMABABA JEJHAYNHA TAYKACTE KMHETHUKE
PEAKTOPA 3A 3AJIATY YHETY PEAKTUBHOCT

Ja ce pellle jefHauYNHE PeaKTOPCKE KUHETHKE MPUMEHEH j€ KOHIIENT yOp3ama KOHBEPreHuyje,
Takobe MO3HAT KAao eKcTpamolsanuja. JeAHOCTAaBHOCT METOfe UCKaszaHa je (popMynanujoM peuiermba
3aCHOBAHOT Ha allPpOKCUMAIMj KOHAYHUX Pa3JIiKa, Koja KOHBEpPrupa ca BUCOKOM TauHouthy Kopucrehu
no3Harty BpefiHOCT rpemike. [Tomohy Pom6eprose ekcrpanonaimje mokazaHa je BACOKa TAYHOCT MOCTYTKa
3a pasNMyuTe 3ajaTe IPOMEHE pPEAKTUBHOCTH IIO3HATE Yy JMUTEPATypH. JeqUHCTBEHa oOcoOuHa
HpeoxKeHor anroputMa, Hassanor PKE/P(oMGepr), y Tome je na ce He oOpaha moce6Ha naskmba YBpCTHHA
KMHETUYKUX jeflHAaUNHa peakrTopa. Haj3am, mo cBojoj jemHOCTaBHOCTH M TauHocTH, Moxke ce PKE/P
ajropuTaM OCHOBAHO CMaTpaTU HajleIOTBOPHUjUM HYMEPUUYKUM PELIEHEM PeaKTOPCKUX KMHETUYKUX
jemHaYMHA pa3BUjEHUM [0 Cajia.

Kmwyune peuu: kuneiliuka HykaeapHux peaxitiopa, Pombepzosa excilipaiionayuja, yHeitia peakitiu8HOCIL,
iepmMuuKU peakitiop, 6p3u peaxitiop




