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The flux expansion nodal method is a suitable method for considering nodalization effects in
node corners. In this paper we used this method to solve the intra-nodal flux analytically.
Then, a computer code, named MA.CODE, was developed using the C# programming lan-
guage. The code is capable of reactor core calculations for hexagonal geometries in two energy
groups and three dimensions. The MA.CODE imports two group constants from the WIMS
code and calculates the effective multiplication factor, thermal and fast neutron flux in three
dimensions, power density, reactivity, and the power peaking factor of each fuel assembly.
Some of the code's merits are low calculation time and a user friendly interface. MA.CODE
results showed good agreement with IAEA benchmarks, 7. ¢. AER-FCM-101 and

AER-FCM-001.
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INTRODUCTION

The reactor core is a heterogeneous medium
with a limited size. When neutrons are distributed
throughout the core, they may be absorbed by fuel,
moderator, coolant, clad, and structural materials, or
may leak out from the borders. The exact solution of
core space equations is very important in the calcula-
tion of fuel burn-up and transient analysis. In order to
convert the problem into a homogeneous medium, the
core is usually divided into many areas.

A large number of approximation methods have
been developed to enable a more computationally trac-
table solution for the effective multiplication constant
and flux distribution in reactor cores. These methods
can generally be classified as nodal, coarse-mesh, or
synthesis methods [1].

Nodal methods characterize the global neutron
flux distribution in terms of a small number of parame-
ters in each of the several large regions, or nods, into
which the reactor core is subdivided for this purpose.
Such methods generally require detailed heteroge-
neous intra-nodal flux distributions to construct ho-
mogenized parameters for each of the many nods into
which a reactor core may be divided and to calculate
coupling parameters that link the average flux solution
in adjacent nodes. Global average nodal fluxes must
then be combined with the intra-nodal heterogeneous
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flux solution if a heterogeneous flux distribution is re-
quired [1].

Conventional nodal methods are the first class
of nodal models. The basis of such methods is the rep-
resentation of the neutron flux or neutron fission rate
within each of the many homogenized fuel assemblies
by a single nodal average flux or fission rate that is
coupled to the average flux or fission rate in adjacent
nodes by the intra-nodal diffusion of the fast neutron
which is represented by coupling coefficients [1].

The transverse integrated nodal method (TINM)
is the second class of nodal methods. These methods
have been formulated on the basis of integrating the
3-D diffusion equation over two transverse directions
so as to obtain a 1-D diffusion equation, with trans-
verse leakage terms, which can be solved within a
node by approximating the dependence on the remain-
ing spatial variable, usually with a polynomial. These
methods are consistently formulated in that they re-
duce the limit of small node sizes to the conventional
finite-difference method for the homogenized reactor
model [1]. Among them, ANC-H [2, 3] and the analyt-
ical function expansion nodal (AFEN) method [4, 5]
are most noticeable. They both eliminate the difficul-
ties of performing transverse integration in hexagonal
geometry and provide an accurate solution for various
types of reactors. The ANC-H code converts hexago-
nal geometry into square geometry and squared rela-
tionships in the Cartesian system. In this method, due
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to the conversion of hexagonal to square, the Jacobi el-
liptic function is difficult to establish [6].

The AFEN method directly solves multi-group
neutron diffusion equations and its response to the
separation of analytic functions can be considered,
while neutron diffusion equations have a good accu-
racy of solutions in all parts. The surface averaged flux
and six points' corner fluxes are considered the cou-
pling nodal boundary conditions. In this method, due
to the addition of boundary conditions, computational
complexity increases [6].

In flux expansion nodal method (FENM), the
intra-nodal fluxes were expanded into a set of analytic
basis functions for each group. They improved the
nodal coupling relations and a new type of nodal
boundary conditions which require the continuity of
both the zero- and first-order moments of partial cur-
rents across the nodal surfaces was proposed [6].

In this paper we used the FENM with the intro-
duction of the volumetric average flux (@ ). Taking
into account the external boundary conditions and the
continuity of partial currents in the vicinity of nodal
surfaces, we have calculated the flux coefficients for
each node. By substituting the flux coefficients in the
volumetric average flux correlation, the average neu-
tron flux for each group and node was achieved in or-
der to be used for the calculation of K from the
Power-Method. Then, a computer code, the so-called
MA.CODE, was developed using C# to calculate the
thermal and fast neutron flux in three dimensions,
power density, reactivity and the power peaking factor
of each fuel assembly.

Compared to IAEA benchmarks AER-FCM-101&
AER-FCM-001, MA.CODE results showed good agree-
ment.

METHODS OF CALCULATION

The first step in deriving nodal equations is the
extraction of the neutron balance equation using the
Boltzmann transport equation by integrating overall
moving neutron directions, energy groups and the vol-
ume of the node. The matrix form of the two-group dif-
fusion equation in three-dimensional hexagonal ge-
ometry is
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By summarizing the above equations in matrix
form, we have
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For the two groups of neutron energy, y,= | and
%> = 0, up-scattering is assumed zero (i. e. X¥,; = 0).

Also,by knowing thatX ; =X, -2, ,= 2, —2,, the
Eigen value equation could be written as
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For simplification, we use the following approx-
imation
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In eq. (9), 4, and A, are called fundamental
buckling and first harmonic buckling, respectively [7].
For the two eigenvalues of 1, the eigenmatrix A is de-
fined as
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The auxiliary flux could be defined as a polyno-
mial [6].
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v, (N=E[4e" +BLe™ ] (1)
=1

Eight interface partial currents and 10 first-order
moments of the interface partial currents as the bound-
ary conditions that constrain intra-nodal flux distribu-
tions in the hexagonal node are shown in fig. 1 [6].

Where arbitrary unit vectors are
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IfA, >0— m =K and having e* =sinh x +
+cosh xand e *=cosh x—sinhx eq. (11) by using arbi-
trary unit vectors of eq. (12) could be expanded into
the following form
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Figure 1. Co-ordinate system for the hexagonal node

If4, <0—H4,|=i\A,| =iK, and knowing

that e*=cosx +isinxand e =cosx—isinx,eq. 11
by using arbitrary unit vectors of eq. 12 would be
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From egs. (10) and (11) for the two groups of neutron

energy in two modes, the following formula is ob-
tained

0
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The solution of eq. (15) leads to four sets of two
equations in which four equations must be zero
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The solutions to eq. (16) are
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The relation between the auxiliary flux and the
intra-nodal flux is
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In this equation, the intra-nodal flux is on the left
and the second matrix on the right side of the equation
is the auxiliary flux.

Eighteen unknown coefficients for 4, and B,,
in two modes (m =0, m = 1) and two energy groups are
obtained from the analytical integration of eq. (18).
The boundaries of the surface integrals are introduced
in fig. 2.

According to the integral boundaries, eq. (18) for
surface number 1 and for modes 0 and 1 becomes
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For the purpose of conciseness, correlations for
surfaces 2-6 are not given here.

Coefficients for 4,, and B, from the above equa-
tions are defined by using new parameters named
gamma factors. The said gamma factors are intro-
duced in order to benefit from the symmetry of the
hexagonal node. They are functions of K, (buckling
mode) and H (pitch).
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For mode 0, the aforementioned 4,, and B, coef-
ficients are given in tab. 1.

For calculating @, whenA >0 (A <0) we have
to add the results of multiplication of the first column
by the second (third) column for each row. This is the
case with other tables as well.

The average surface current for mode 0 and 1 for
surface 1 can be written as
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Table 2 shows current coefficients for 4, and B,,,.
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Correlations for the flux and current for the up-
per surface (+4) and the lower surface (—%) with their
integral boundaries showed in figs. 1 and 2 are
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Table 1. Flux coefficients of first side (m = 0)

Coefficient when A, > 0 Coefficient when A, <0
Ami (Yg)’l(cosh Y, —cosh 1) (Yg)’l(cos Y, —cos 1)
A (Y3) '(cosh ¥; — cosh Y») (Y3) '(cos Y» — cos Y1)
A (¥)) "2sinhy/3¥/2 sinh ¥,/2 (Y)) '2siny/3Y/2 sin ¥,/2
Ama (Y>) (cosh ¥, — cosh Y3) (Y>) (cos Y3 — cos Y;)
Aps (Y») '(cosh Y3 — cosh ;) (Y») '(cosh Y3 — cosh ;)
Ams (¥)) "2sinh+/3%/2 sinh ¥,/2 (¥)) '2sinhy/3%/2 sin ¥,/2

Am7, Am‘) 0 0

A N2k, )" sinh ¥, sinh </3Y/2 N2 (k, )" sin ¥, sinh+/3Y/2
B (Ys) '(sinh Y; — sinh Y») (Y3) \(sin ¥; — sin 1»)
B (Y5) '(sinh Y; — sinh Y») (Ys) \(sin ¥, — sin 1>)
Bus (Y1) "2coshy/3Y/2 sinh ¥,/2 (€1)"2c0sV/3Y/2 sin Y1/2
B (Y») '(sinh Y; — sinh ¥3) (Y») \(sin ¥, — sin ¥3)
Bus (Y»)\(sinh Y; — sinh ¥3) (Y)\(sin ¥, — sin ¥3)
B (Y1) '2coshy/3Y/2 sinh ¥,/2 (Y1) "2cos+/3Y/2 sin ¥,/2
B (k)" sinh /27, (k,h) " sin /27,
Buus N2 (k, k)" sinh ¥, cosh /3, N2 (k, )" sin ¥, cos+/3¥/2
Buo 243 (k2hH ) sinh Y, sinh ¥/2 243 (k2hH ) sin Y, sin ¥/2

Table 2. Current coefficients of first side (m = 0)

Am>0 Am<0

Am ky cos m/12(Y3) (sinh Y, — sinh ¥3) ke cos T/12(Y3) (sin Y — sin Y5)

Am ky cos T/12(Y3) '(sinh Y; — sinh Y5) ky cos T/12(Y3) ' (sin Y — sin Y5)

A3 kyy, cos T /4(¥,)™'2 cosh +/3Y;/2sinh ¥/ 2 ke, cos T/4(Y) 2 cos/3Y;/2sin ¥/ 2

Ama ky, sinmt/12(Y, ) (sinh Y —sinhY;) ky, sint/12(Y, ) '(sin Y —sinY;)

Ams ky sin/12(Y,) ' (sinh ¥, = sinh ¥)) ky sinm/12(Y,) '(sin ¥, —sin¥)

Aus —ky, cosT/4(Y) "2 cosh +/3Y,/2sinh ¥/ 2 ~ky, cos T/4(¥) "2 cos\/3Y,/2sin ¥/2
A7, Amo 0 0

Ams 7" sinh ¥, cosh +/3Y/2 h'sinY, cos+/3Y/2

B kycos/12(Y,) ' (cosh ¥ — cosh 1) ke cos w/12(¥3) ' (cos ¥, — cos 1})

B km cos /12(Y3) '(cosh Y; — cosh Yy) ko cos /12(Y3) '(cos Y — cos Y;)

B3 ky, cosm/4(Y,)'2sinh ~/3Y,/2sinh ¥/2 kyy, cos T/ 4(Y,) "2 sin~/3Y,/2sin ¥/ 2

;. kg, sinm/12(Y,) " (cosh ¥, — cosh ¥;) kg, sin/12(Y,) ' (cos ¥, —cos ¥)

Bus ky, sint/12(Y, )" (cosh Y —coshY)) ky, sinmt/12(Y, ) '(cos Y, —cosY)

Bne k,, cosm/4(Y,) " 2sinh+/3Y,/2sinh ¥/2 ky, cosT/4(Y,) ' 2sin~/3Y,/2sin ¥/2
Bz, Bino 0 0

Buns ™' sinh ¥, sinh +/3¥/2 h'sinY, sin/3Y/2

Equation 30 shows the average partial current in
the two modes and two groups of neutron energy for
the six lateral surfaces of the hexagonal node, while
eq. (31) is for the upper and lower surfaces.

—rx

— 1-,
Jek :Z gjfiEJg,'f, g=12, u=0,1, k=1,2,..6

(30)
Tt 1 o 1 N
J ok =Zd§g,A iEJg.k, g=12, u=0,1, k=12
(1)

J andJ " as the zero and first moment of the in-
ternal and external currents are defined in egs. (32) and

(33) in which I and ' are constant matrixes whose
arrays depend on K and node group diffusion. Cisa
matrix which defines intra-nodal flux coefficients

J =T'C (32)

—+ +

=T C (33)

Matrix C is calculated in an iterative process be-
tween egs. (32) and (33). J ineq. (32) depends on ex-
ternal boundary conditions and external currents from
neighboring nodes. We used the Gauss elimination
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method to determine C in eq. (32). Then, by substitut-
ing matrix C in eq. (33), external partial currents were
calculated. The external currents from the node are the
internal currents of the neighboring nodes.

Finally, the volumetric average flux for the hex-
agonal node is obtained in eq. (34) by substituting the
flux coefficients in the volumetric average flux corre-
lation; the average neutron flux for each group and
node is achieved in order to be used for the calcula-
tion of K ¢ from the power-method.

P = (43Hh) "

R[ S A, SN (K e,r) + iBMCS(KOe[r)] +
/=1 =1

+S[ $4,SN (Kie)+ £B,CS (Kleér)}}dxdydz (34)

Determination of
group cross-sections
& boundary

conditions

A

Calculation of intra
nodal expansion
coefficients based
on the input currents
(eq. 34)

. v

Calculation of intra nodal output
currents from eq. (35) & intra
nodal flux coefficients

I |

Calculation of average
intra nodal flux

Are all nodes
swept?

Go to the next node

onvergence
criteria met?

Figure 3. Flowchart of MA.CODE

- N= AL
Propertes | Configuration
Xoloas | Yo
Y Avad
Numbes of 20mes in Y s Nusmbes of apers in awist
19 "
Al lagees
Pich (2] Simdar layers thickness
Heght(Cm} 355
LenghtiCm} 263
Beardy condtnn:
No of boundsy conditions: RO
1 0 (et J( o ]
Difusion parameters
e S s
Growp Difusion Removal Nu Fission Power perunt  Down scatter
cosficent fhac f_’-
Fast 1500842640 (0024268833 (SSMMSIEQE]  (73m3mesk]  [156220¢ 3
Themal | 3SS07E-01 00706763 100228901 1319886748 t ®
[ ass ) Remove | [ Updsedma |
Ratus

Figure 4. Main window of the MA.CODE

AL L L MA.CODE
i 8
Properties | Configuaton
Erter confiaation fle. |G \gbushehv\Bock1 bt
(@ Automatically select color of material. Layee3
© Manusly select cokor of materisks (e ] (oot ]
MatND
1.
2 m
im
4
5
¢m
7
wn

Figure 5. Core configuration in the MA.CODE

The whole procedure for the MA.CODE is
sketched in the flowchart of fig. 3.

In a user friendly environment, the MA.CODE
requires a number of nodes in the radial and axial di-
rections, as well as the lattice pitch and boundary con-
ditions for hexagonal nodes. The code is coupled with
WIMS DS and reads the cross-sections from WIMS
automatically (see fig. 4).

The core configuration sketched in the
MA.CODE can be seen in fig. 5.

CONCLUSION AND DISCUSSION

In this paper we have used the FENM with the
introduction of the volumetric average flux (®u).
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Schulz benchmark relative power density
MA. CODE relative power density
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Figure 6. Comparison between MA.CODE results with AER-FCM-101 (Schulz) benchmark

Taking in consideration the external boundary condi-
tions and the continuity of partial currents in the vicin-
ity of nodal surfaces, we have calculated the flux coef-
ficients for each node. By substituting the flux
coefficients in the volumetric average flux correlation,
the average neutron flux for each group and node is
achieved. Thus, K can be easily calculated from the
Power-Method.

By the analytical solution of the integrals of
flux and current on the surface of the hexagonal
node with respect to fig. 1, fig. 2, and eqgs. (19) to
(29), using the symmetry of the hexagonal node and
considering eq. (21), we have obtained significant
results concerning the relation between the flux and
current coefficients using the buckling mode. In two
parallel node surfaces, 4, flux and current coeffi-
cientsiny =0, (A,, >0, and A, <0) are symmetric
and B, flux and current coefficients are equal, butin
1 =1 this is reverse.

For the sake of benchmarking, we have com-
pared the results from the flux expansion nodal
method (FENM) using our code (MA.CODE) with
two IAEA benchmarks, i. e. AER-FCM-101 [8], also
known as the Schulz benchmark and AER-FCM-001
[9], known as Seidel's benchmark.

The FENM method proposed in this paper
shows a good agreement with these two benchmarks.
The effective multiplication factor for the Schulz
benchmark was 1.04953, while our code calculates
1.049848 (i. e. 0.03% error). The comparison between
MA.CODE fuel assembly relative power densities
with the AER-FCM-101 benchmark is given in fig. 6.
Relative power densities from the MA.CODE and
AER-FCM-101benchmark for fuel assembly no. 1 are
also compared in fig. 7.
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Figure 7. Comparison between relative power densities
from MA.CODE with AER-FCM-101 (Schulz)
benchmark for fuel assembly no. 1

The effective multiplication factor for Seidel's
benchmark was 1.011470, while our code calculates
1.012104 (i. e. 0.06% error). The comparison between
the MA.CODE fuel assembly relative power densities
and the AER-FCM-001 benchmark is given in fig. 8.
Relative power densities from the MA.CODE and
AER-FCM-001benchmark for fuel assembly no. 1 are
also compared in fig. 9.
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Mejcam MOXAMAJTHNIA, Amu ITABUPAHIEX, Mocracpa CEAUT'

PA3BOJ ITIPOTPAMA 3A HEYTPOHCKE INTPOPAYYHE JE3I'PA
HYKIIEAPHOI' PEAKTOPA CA XEKCATOHAJTHOM REINIJOM
METOJIOM HOIJAJIHOI PA3BOJA ®JIYKCA

MeTopa HofanHOT pa3Boja (hykca OrOfiHA je 3a pasMaTpame epeKTa Hofanu3aluje y HOJHUM
yIJIOBUMA, a Y OBOM pajly KopulltheHa je 3a aHaJUTHUKO pellaBame MebyHopanHor duykca. Ha oBoj
OCHOBH pa3BHjeH je pauyHcku nporpam noj umeHoM MA.CODE y nporpamckom je3uky C#. [Iporpam je
ocnoco0JbeH 32 MPOpavyH peaKTOPCKOT je3rpa ca XeKcaroHaJIHOM reoMeTpujoM hennje, y IBe eHepreTcKe
rpyne u tpu auMeHnsuje. [Iporpamom MA.CODE npey3umajy ce JBOrpyIHE KOHCTAHTE U3 MPOrpaMcKOT
naketa WIMS u uspadyHaBajy e(peKTHBHH (haKTOp YMHOXKaBama, (PIyKCeBU TepMalHuUX U Op3uX
HEYTPOHA y TP AUMEH3Hje, TYCTHHA CHare, PeaKTHUBHOCT U (haKTOp MUK CHATe 3a CBAKU FOPUBHH aHCAMOJT.
Meby BpnuHama nporpama cy Op3MHa HOpopayyHa M jeJHOCTaBaH KOPUCHUYKU HPUCTYI. Pesynrarm
nporpama MA.CODE no6po ce cnaxxy ca IAEA rectoBuma, Ha npumep, AER-FCM-101 u AER-FCM-001.

Kmwyune pequt: HOOAAHA METHOOA, XeKCAZOHAAHA ZeOMETUPU]A, PACTIOOead HeYIUPOHCKOZ (hayKcd,
MA.CODE




