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The numerical solution of the point kinetics equations in the presence of Newtonian tempera-
ture feedback has been a challenging issue for analyzing the reactor transients. Reactor point
kinetics equations are a system of stiff ordinary differential equations which need special nu-
merical treatments. Although a plethora of numerical intricacies have been introduced to
solve the point kinetics equations over the years, some of the simple and straightforward
methods still work very efficiently with extraordinary accuracy. As an example, it has been
shown recently that the fundamental backward Euler finite difference algorithm with its sim-
plicity has proven to be one of the most effective legacy methods. Complementing the back-
ward Euler finite difference scheme, the present work demonstrates the application of ordi-
nary differential equation suite available in the MATLAB software package to solve the stiff
reactor point kinetics equations with Newtonian temperature feedback effects very effectively
by analyzing various classic benchmark cases. Fair accuracy of the results implies the efficient
application of MATLAB ordinary differential equation suite for solving the reactor point ki-
netics equations as an alternate method for future applications.
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INTRODUCTION

The numerical solution of the point kinetics
equations (PKE) in the presence of Newtonian feed-
back has been a challenging issue for analyzing reac-
tor transients. Recently a very interesting paper high-
lighting the various old and modern algorithms for the
solution of the reactor point kinetics equations has
been published by B. D. Ganapol [1]. In his seminal
work Ganapol has brought out the notable historic at-
tempts made to provide the original and efficient nu-
merical schemes for the solution of the point kinetics
equations. In addition, he has also cited the improved
solution techniques, which has evolved over time.

Dated back in 1958, Akcasu [2] had given a gen-
eral solution of the reactor kinetics equations without
feedback by transfer function approach. In 1960,
Keepin and Cox [3] had given a general solution of the
reactor kinetics equations by reducing them to an inte-
gral form convenient for explicit numerical solution.
Subsequently in the 1960's there were several attempts
to develop numerical methods based on Runge-Kutta
methods [4, 5], Euler integration schemes [6, 7], finite
difference methods [8] and methods based on integral
equation formulations with the slowly varying factor

* Corresponding author; e-mail: dina@igcar.gov.in

in each integrand represented by an assumed func-
tional form [9-13]. A method based on analytic
continuation was proposed by Vigil [14], which was
well suited for fast digital application during that time.
In order to avoid smaller time steps and long comput-
ing times by Runge-Kutta methods, [zumi and Noda
[15] developed a new extrapolated implicit method.
This method not only assured stability and accuracy
but also estimated the truncation error at a particular
time and could control the time interval by adjusting
the magnitude of the estimated truncation error.
There were several attempts made by applying
Pade and Chebyshev types of approximations,
Hermite polynomials and power series solution meth-
ods for solving the point kinetics equations for various
reactivity insertions [16-18]. Accurate solution of the
reactor kinetics equations was obtained by Basken and
Lewins [19] by applying straightforward power series
recurrence relation in a lumped model with time vary-
ing reactivity. During the past one-decade many novel
numerical methods, to name a few, the analytical in-
version method [20], the analytical exponential
method [21, 22], fourth order Rosenbrock method [23]
with an automatic step size control, an integral method
based on better basis function [24], have been adopted
to find the accurate, efficient and stable solutions of
the point kinetics equations. More recently in an inter-
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esting work Nahla [25] has introduced an efficient
technique for solving the non-linear point kinetics
equations in presence of the adiabatic temperature
feedback effects. In this work, the predicted values of
reactivity are determined using backward Euler in
conjunction with the Crank Nicholson approximation
scheme. The predicted value of reactivity is required
later to change the nonlinear differential system to lin-
ear system.

At this point our attention is drawn to the re-
marks made by Ganapol [1] that although so many nu-
merical intricacies have been introduced to solve the
pointkinetics equations over years, arguably the back-
ward Euler finite difference (BEFD) algorithm with its
simplicity has proven to be one of the most effective
legacy methods. Complementing the proposition of
Ganapol, in the present work ordinary differential
equation suite (ODE suite) available in the MATLAB
software package has been applied to solve the stiff re-
actor pointkinetics equations with Newtonian temper-
ature feedback effects very effectively by avoiding the
over complicated schemes proposed in the previous
works.

APPLICATION OF MATLAB FOR
SOLUTION OF POINT KINETICS
EQUATIONS

The basic space independent reactor point kinet-
ics equations with m group of delayed neutrons can be
written as follows

dN (1) :[p(t,N)—ﬁ
dr A

}N<t>+_fzzlxici<r)+q<r> (M

% :%N(I)—lici (t)where,i=12,3...m (2)
t

by introducing the Newtonian feedback, reactivity can
be represented as

p(t.N)=py (1)-B[de'N(r') (3)
0

Here N (¢) is the neutron density or reactor power
attime, p —thereactivity, 8 —the total delayed neutron
fraction, 5;—the fraction of the i-group of delayed neu-
trons, A —the prompt neutron generation time, A; — the
precursor decay constant of the i group, g — the exter-
nal source, p,— the initial reactivity, and B — the abso-
lute value of the temperature coefficient of reactivity.
The above stiff non-linear ordinary differential equa-
tions are solved by MATLAB for five benchmark
problems with step, ramp and sinusoidal reactivity in-
sertions with and without temperature feedback.
These benchmark problems are the same, which were
solved by Ganapol and Nahla [1, 25].

MATLAB ODE suite for solving
stiff differential equations

For scientific computing MATLAB software has
inbuilt solvers to handle different classes of ordinary
differential equations (ODE). A broad overview on the
MATLAB ODE solvers along with the numerical pro-
cedures is given by Shampine and Reichelt [26]. In an
initial value problem, the solution of interest is for ' =
= F (t, y) which satisfies a specific initial condition y =
=y, at a given initial time #,. The solvers for stiff prob-
lems allow the more general form M(?) y'=£ (¢, y) with a
mass matrix M(7) that is non-singular and usually
sparse. There are four special solvers designed
dedicatedly to solve the stiff problems namely ODE15s,
ODE23s, ODE23t, and ODE23tb. In this work the
ODE15s solver has been used for solving the point ki-
netics equations. It is a variable order solver based on
the numerical differentiation formulas (NDF), which is
amodified form of the backward differentiation formu-
las (BDF). The various options used in the solver are
mentioned in the following sections while dealing with
the individual benchmark problems.

NUMERICAL RESULTS OF
BENCHMARK PROBLEMS

As mentioned earlier, to substantiate the accu-
racy of the MATLAB ODE solver, five benchmarks
are analyzed and the numerical results are compared
mainly with those obtained by Ganapol through BEFD
method. The results of Ganapol (hence forward re-
ferred to as BEFD results) are of specific interest as the
numerical values are of very high precision (in some
cases up to 19 decimal places for neutron density pre-
diction). The basic kinetics data used in the
five-benchmark cases pertaining to the three reactor
systems are presented in tab. 1.

Benchmark-1: step reactivity
insertion without feedback

In the first benchmark the variation of neutron
density starting with an initial equilibrium value

Table 1. Reactor Kinetics parameters used in the
benchmarks

Reactor-I Reactor-II Reactor-III

Bi  A[s'1 B Mls1L B A

l

1 10.000285 |0.0127 | 0.000266 | 0.0127 |0.00021| 0.0124
2 10.0015975/0.0317|0.001491 | 0.0317 |0.00141| 0.0305
3 10.001410| 0.115 {0.001316| 0.115 0.00127| 0.111
4 10.0030525| 0.311 |0.002849 | 0.311 |0.00255| 0.301
5 | 0.00096 | 1.40 |0.000896| 1.40 [0.00074| 1.13
6 10.000195| 3.87 |0.000182| 3.87 [0.00027| 3.00
B 0.0075 0.007 0.00645
A 5107%s 2107 s 5107 s
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Table 2. Neutron density for step reactivity insertions

Time [s]

p=-1%

p=-05%

p=+0.5%

BEFD

MATLAB

BEFD

MATLAB

BEFD

MATLAB

1.0E-01

5.205642866E-01

5.205642866E-01

6.989252256E-01

6.989252256E-01

1.533112646E+00

1.533112646E+00

1.0E+00

4.333334453E-01

4.333334453E-01

6.070535656E-01

6.070535656E-01

2.511494291E+00

2.511494291E+00

1.0E+01

2.361106508E-01

2.361106508E-01

3.960776907E-01

3.960776907E-01

1.421502524E+01

1.421502524E+01

1.0E+02

2.866764245E-02

2.866764245E-02

7.158285444E-02

7.158285444E-02

8.006143562E+07

8.006143562E+07

Table 3. Neutron density for step reactivity insertionp=1$
BEFD MATLAB

1.0E-01 |2.5157661414043723001E+00|2.515766141404372E+00
5.0E-01 | 1.0362533810640214680E+01|1.036253381064022E+01
1.0E+00 |3.2183540945534212174E+01 |3.218354094553435E+01
1.0E+01 |3.2469788980305281366E+09 |3.246978898030739E+09
1.0E+02 [2.5964846465508730749E+89 |2.596484646556433E+89

Time [s]

N, = 1.0 is determined with time. The neutron density
variation with time for 100 seconds in case of Reac-
tor-1 is calculated for step reactivity insertions of —1 §,
-0.5$,+0.5 %, and +1 $. It may be recalled here that,
when reactivity p is expressed in units of effective de-
layed neutron fraction (5 ) the unit is called “dollar”
($). Thus as per the SI unit, one dollar (1 $) of reactiv-
ity is equivalent to the effective delayed neutron frac-
tion.

The results obtained by MATLAB are compared
with the BEFD values in tabs. 2 and 3. It can be ob-
served that for reactivity insertions of -1 $, -0.5 $,
+0.5 §, the neutron densities calculated by MATLAB
match exactly (up to 9 decimal places) with the BEFD
results (tab. 2). In the case of reactivity insertion of 1 $,
the results by BEFD method have been produced up to
19 decimal places by quadruple precision calculation.
Due to limitations, in the present study the calculations
are carried out by double precision only. Therefore,
the results match up to 11-15 decimal places (embold-
ened in tab. 3). The relative and absolute tolerances
considered in the MATLAB calculations are 102 and
1078, respectively.

Benchmark-2: ramp reactivity
insertion without feedback

In the second benchmark a comparison is made
for ramp reactivity insertion rate of 0.1 $/s without
feedback in Reactor-II. The variation of neutron den-
sity with time, starting from N, = 1.0 are presented in
tab. 4. In this case also a fair matching is observed be-
tween the MATLAB and BEFD results. Onlyatz=11s
the MATLAB result differs at the 9™ decimal place.

Benchmark-3: sinusoidal reactivity
insertion without feedback

The third benchmark deals with a sinusoidal re-
activity insertion without feedback in a fast reactor

with8 =0.0079 (one delayed group),A =0.077s1, A =
= 107% s and a sinusoidal reactivity p(r) = p,sin(n#/T).
In this benchmark, two cases are analysed. In the first
case the neutron density with an initial value of N, =
= 1.01s calculated for p,=0.0053333 and 7= 50 s, the
results of which are given in tab. 5. For comparison,
the emboldened digits indicate the matching between
the BEFD and MATLAB calculations. The second
case is designed to determine accurately the time to the
first peak (#,) and the peak neutron density (,) for
four different sinusoidal reactivity insertions given in
tab. 6. In addition to BEFD and MATLAB methods,
the results obtained by Nahla [25] through an efficient
technique (referred to as ET in tab. 6) and also by
power series solution (referred to as PWS in tab. 6) in
an earlier work of Aboanber and Hamada [27] are also
compared. Interestingly the peak neutron density val-
ues calculated by MATLAB match exactly with the
BEFD values and the time to attain the first peak also
matches fairly well vis- a-vis other methods. The vari-
ation of neutron densities over 1000 seconds for all the
four values of T are shown in fig. 1 which was also
posed as a challenge by Ganapol.

Table 4. Ramp reactivity insertion of 0.1 $/s

R Neutron density
Time [s]

BEFD MATLAB
2.0E+00 1.338200050E+00 1.338200050E+00
4.0E+00 2.228441897E+00 2.228441897E+00
6.0E+00 5.582052449E+00 5.582052449E+00
8.0E+00 4.278629573E+01 4.278629573E+01
1.0E+01 4.511636239E+05 4.511636239E+05
1.1E+01 1.792213607E+16 1.792213608E+16

Table 5. Neutron densities for sinusoidal reactivity

variation
Time [s] BEFD MATLAB
10.0 2.065383519E+00 2.065383519E+00
20.0 8.854133921E+00 8.854133925E+00
30.0 4.064354222E+01 4.064354222E+01
40.0 6.135607517E+01 6.135607517E+01
50.0 4.610628770E+01 4.610628771E+01
60.0 2.912634840E+01 2.912634841E+01
70.0 1.895177042E+01 1.895177053E+01
80.0 1.393829211E+01 1.393829229E+01
90.0 1.253353406E+01 1.253353422E+01
100.0 1.544816514E+01 1.544816534E+01
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Table 6. Time to first peak and peak densities

BEFD

MATLAB

ET PWS

3
TSPl 0 N, by [s]

Np t [s] Ny % [5] Np

50 [5.3333]3.910712E+01 |6.153015E+01|3.910719E+01

6.153015E+01|3.9111E+01|6.1531E+01|3.9112E+01] 6.1530E+01

150 |3.23271.373198E+02|9.581150E+01 | 1.373197E+02

9.581150E+01

1.3732E+02|9.5811E+01 |1.3729E+02| 9.5811E+01

250 12.3193|2.371265E+02|1.134679E+02 | 2.371265E+02 | 1.134679E+02 |2.3712E+02|1.1346E+02 |2.3715E+02| 1.1346E+02
350 |1.8083|3.370713E+02|1.238209E+02 | 3.370714E+02 | 1.238209E+02|3.3707E+02|1.2382E+02 [3.3705E+02| 1.2382E+02
10% B Table 8. Time to first peak and peak density
& t [s] N,
S 101250 PB ™ 5EmD MATLAB BEFD MATLAB
g --- T=250 0.1 |1.089694E+02| 1.089694E+02 | 2.110490E+00| 2.110490E+00
g e T TER 0.2 9.236818E+01|9.236818E+01 | 5.699818E+00 | 5.699818E+00
g 0.5 |2.829469E+01|2.829469E+01 |4.575243E+01 | 4.575243E+01
2 1.0 |9.534776E-01 9.534770E-01 |8.078681E+02 | 8.078681E+02
1.2 [3.165970E-01 3.165970E-01 |8.021025E+03 | 8.021025E+03
\ : P ) 1.5 | 1.682894E-01 1.682890E-01 |4.302461E+04 | 4.302460E+04
10 Sl T TN i TS 2.0 [9.839055E-02 | 9.839040E-02 | 1.678457E+05 | 1.678457E+05
. ” ‘\/\ —\,\ - -~ . - - : _ - -~
o = z - - - - |
0 100 200 300 400 500 600 700 800 900 1000

Time [s]

Figure 1. Neutron density variation for various
values of T

Benchmark-4: step reactivity
insertion with feedback

In the fourth benchmark, step reactivity inser-
tion with temperature feedback is considered for Re-
actor-1II. Like the previous cases, here the neutron
density variation with time in steps of 10 s is deter-
mined for three step reactivity additions of 1.0 $, 1.5 $,
and 2 $ with a negative reactivity feedback (B =
=2.5-107%) as given in eq. 3. The results are compared
in tab. 7. Further, the peak neutron density along with
the time to attain the peak density for several step in-
sertions with the same feedback is given in tab. 8. It
may be noted that for p,=0.1$,0.2 $, and 0.5 § the
maximum time step taken is 10~ s, where as for p, =
=1.09$,1.28%,1.58$, and 2 $ the maximum time step
taken is 107° s. As a completeness of the benchmark
problem, the neutron density trace for several step re-
activity insertions with feedback is also displayed in
fig. 2. The more or less exact matching of the

108 -
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C
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§ 102
5
[
=4

10°

pol$1=0.1,0.2,0.5,1.0,1.2, 1.5, 2.0
1021
107 107 1072 10° 102 10*
Time [s]

Figure 2. Neutron density variation for step reactivity
insertions with feedback

MATLAB results with that of BEFD is also observed
in this benchmark.

Benchmark-5: ramp reactivity
insertion with feedback

Benchmark-5 deals with a special case of reac-
tivity feedback called power excursions with compen-

Table 7. Neutron density with reactivity feedback (B = 2.5~10’6)

N N N
Time [s] (forp=189) (forp=159%) (forp=29)
BEFD MATLAB BEFD MATLAB BEFD MATLAB
10 132.0385964 132.0385964 107.9116832 107.9116830 103.3808535 103.3808534
20 51.69986094 41.60428128 41.60428123 39.13886903 39.13886899 39.13886899
30 28.17468536 28.17468536 23.29893150 23.29893148 22.00377721 22.00377719
40 18.14633000 18.14632999 15.30342749 15.30342749 14.49367193 14.49367192
50 12.77957703 12.77957703 10.89014315 10.89014314 10.31861108 10.31861108
60 9.474932501 9.474932501 8.101031859 8.101031856 7.663319203 7.663319201
70 7.244477494 7.244477494 6.182690459 6.182690457 5.829395378 5.829395376
80 5.646289700 5.646289700 4.793307820 4.793307818 4.499427073 4.499427071
90 4.456834255 4.456834255 3.755614629 3.755614628 3.507422663 3.507422662
100 3.550102766 3.550102766 2.966074952 2.966074951 2.755126886 2.755126886
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Table 9. Time to peak and peak neutron density for ramp initiated adiabatic compensation with Doppler

-1 3.1 Tpeak [S] Npeak
als] Blem's ] BEFD MATLAB BEFD T MaATLAB

o1 10" 2.2466344E-01 2.2466300E-01 2.4203815E+11 2.4203803E+11

) 10" 2.3890693E-01 2.3890700E-01 2.8986741E+13 2.8986728E+13

0.01 10" 1.1060774E+00 1.1060769E+00 2.0123519E+10 2.0123513E+10

) 10" 1.1551476E+00 1.1551479E+00 2.4911782E+12 2.4911777E+12

0.003 10" 2.9105821E+00 2.9105820E+00 5.1141599E+09 5.1141589E+09

) 10" 3.0076015E+00 3.0076010E+00 6.5344738E+11 6.5344729E+11

0.001 10’1; 7.4887663E+00 7.4887660E+00 1.2740752E+09 1.2740750E+09

10° 7.6835876E+00 7.6835880E+00 1.7210080E+11 1.7210078E+11
107 — over the years, some of the simple and straightforward
& 10" ) / methods still work very efficiently with extraordinary
é A P—/ A accuracy. As an example, it has been shown recently
3 A that the fundamental BEFD algorithm with its simplic-
2 ity has proven to be one of the most effective legacy
3 B=1E-11 methods. Complementing the BEFD scheme, in the
= present work advanced ordinary differential equation
solvers based on the NDF available in the MATLAB
software package are applied to solve the stiff reactor
point kinetics equations with Newtonian temperature
0 2 P 6 P 10 12 feedback effects. Five classical benchmark cases in-
Time [s] volving step, ramp and sinusoidal reactivity insertion

Figure 3. Compensated reactor shutdown by various
ramp reactivity

sated response. This is a famous example of compen-
sated reactor shutdown as demonstrated by Keepin [3,
28]. In this case a transient is initiated by ramp reactiv-
ity insertion with a ramp rate “a” where the reactivity
compensation originates from strong Doppler feed-
back and thermal expansion. Using the kinetics data
for Reactor-111, comprehensive feedback of a compen-
sated reactor shutdown is analysed. The transient is
initiated by ramp reactivity insertion with a ramp rate
of “a” and strong Doppler shutdown “B”. The peak
neutron density and time to reach the peak neutron
density is compared in tab. 9. The neutron density pro-
files for different ramp rates and reactivity feedback
coefficients are shown in fig. 3 that perfectly match
with the same obtained by the BEFD scheme. For de-
termining the time to peak density accurately, the max-
imum time step considered in the calculation is 107 s.
While analysing this benchmark Ganapol has pointed
out the poor agreements between the BEFD results and
that obtained by the PWS method in the work of
Aboanber and Hamada [27]. As compared to the PWS
method, a fair agreement of the BEFD and MATLAB
results are observed in this work.

CONCLUSIONS

Although a plethora of numerical methods have
been introduced to solve the point kinetics equations

have been analyzed and the results are compared with
the earlier published BEFD results. Fair accuracy of
the results implies the efficient application of
MATLAB ODE suite for solving the reactor point ki-
netics equations as an alternate method for future ap-
plications.
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PEIMABAILE JETHAYNHA TAYKACTE KMHETHUKE
PEAKTOPA CO®TBEPCKHUM ITAKETOM MATLAB

Hymepuuko peliaBame jeJHaYNHA TAUKACTe KUHETUKE Ca BbbY THOBCKOM TOIJIOTHOM IIOBPATHOM
CIIPErOM U3a30BHO je MUTAKkE Y aHAIN3H PeaKTOPCKUX Mpela3HuX CTalka. Je[HaulHe TauKacTe KHHETUKE
peaxkTopa IpejcTaBibajy CUCTEM CTPOTMX OpAUHAPHUX AuepeHLUjalHUX je[lHauuHa KOje 3aXTeBajy
noceOHe HyMepHUKe NOCTYNKe. Maja je TOKOM rOfinHa YBE[JEHO OOMIbE CIIOKEHUX HYMEPHUKHX TOCTYNaKa
paju pellaBama je[HAUMHA TauKacTe KMHETHUKE, jOLI yBEK Cy HEKe jeJHOCTABHE U AUPEKTHE METOofe
AENOTBOPHE ca M3y3eTHOM TauHourthy. Ha mpumep, y ckopuje BpeMme MOKa3aHO je fa je[HOCTaBaH
¢dyspamenTanan OjiiepoB anropuTaM KOHA4YHMX pasjidKa IIpefcTaBba jefaH off Haje(hUKaCHUjUX
Hacnebenux Metopia. Jonymwyjyhu oBaj anropuram, y OBOM pajy ce aHaIM30M Pa3INYATUX KJIACHYHUX TECT
cllyyajeBa JEMOHCTPHpa U3y3eTHA NPUMEHJBUBOCT MPOLEAype 3a oOUYHe AudepeHlyjaaHe jeHaulHe
(ODE Suite), pacniosioxkuse y codprBepckoM makety MATLAB, Ha peliaBatbe CTPOTHX jeJHAUMHA TAYKACTe
KIHETHUKE peaKkTopa ca yTUlajuMa lbyTHOBCKE TOIUIOTHE TOBpaTHe cupere. [Ipunuyna rTaqyHocT pe3ynrara
yKa3syje Ha ecpukacHy ynotpedy MATLAB nakera 3a perniaBame jefHaUMHa TaUYKacTe KHHETHKE PeakTopa
Kao ajJTepHaTUBHE MeTOfe 3a Oyayhe npuMeHe.

Kmyune peuu: jeOnaquna iiaukaciie kunetiuke, Ojrepos arzopuitiam KoHawHux pasauxa, MATLAB,
Hymepuuka ougeperuujayuja




