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Equations for the calculation of kinetic parameters of thermoluminescent processes are theo-
retically derived for a model of an ideal phosphor. The values used in the calculation are ob-
tained from glow curves and the function that describes the normalized glow curve generated.
On the basis of this function, the equations for activation energy, frequency factor, and
retrapping factor, were derived. All expressions are valid for a general case, when the filling

factor of traps is fj < 1.

The concept of kinetics order was used for the calculation of parameters and the parameter of
kinetics order was defined by means of real physical parameters. Results obtained by the anal-
ysis of synthetic curves and experimental glow curves of phosphor materials provide a deeper
understanding of thermoluminescent kinetics.
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INTRODUCTION

The energy band theory is the basis of the modern
theory of solids. It offers an understanding and explana-
tion of the important properties of thermoluminescent
(TL) semiconductors and insulators. The important fea-
tures of the behavior of TL materials can be correlated
by means of a mechanism based on the energy of the
band theory of solid semiconductors and insulators. For
example, in the first phase after excitation, which is es-
sentially an ionization of a luminescent center, the dis-
sociated electron is very likely to be trapped and held lo-
calized in a discrete energy level within the forbidden
region. Later on, the trapped electron recombines with
the luminescent center and emits the characteristic lu-
minescence only after it has been freed from this
trapped state by thermal excitation.

The simplest physically possible process, which
is described by a simple curve with one maximum, oc-
curs in the case of phosphor that consists of one type of
traps and one type of luminescent centers. This model
is known as the OTOR model (One Trap-One Recom-
bination center) [ 1] or the model of ideal phosphor [2].

The net rate of change in conduction band elec-
tron concentration 7, [cm™] is the thermal generation
rate sn exp(£/kT) minus the recombination rates ¥, n,n
and 7 n.py
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where in time ¢ [s], n [cm ] is the electron trap concen-
tration, N [cm ] — the concentration of traps, p; [cm ]
— the concentration of empty luminescent centers, s
[s']— the frequency factor; E [eV] — the energy depth
ofasingle active trap, 7[K]—the material temperature,
k [eVK '] is the Boltzmann constant, where y [cm’s ']
and 7 [cm’s '] are the recombination probabilities be-
tween the conduction band electrons and the traps or
the luminescent centers, respectively.

Assuming a very short life time of conduction band
electrons, we can write relations: |dn/df<|dn/d and
|dn/dt|<|dp/dt|. Then, due to the charge neutrality re-
quirement, the concentration of trapped electrons # is
equal to the concentration of empty luminescent centers
- The dependence of the radiative recombination rate or
TL intensity /7y [cm s '] on the conduction band elec-
tron concentration #, and concentration of empty lumi-
nescent centers p, is described by the formulas

dp, dn
I = =— = n =
TL ar dr Yin. Py
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=y = N M7
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If we take that » = y,/y is the retrapping factor,
the differential equation describing the model of ideal
phosphor is given as [2, 3]
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An approximation, describing the quasi-station-
ary equilibrium of electrons in the conduction band is
used to obtain the equation of an ideal phosphor
model. The approximation assumes that the rate of
change of electron concentration in the conduction
zone is much smaller than the speed of change of the
electron in the traps (the consequences being that
dn/dt= 0 and p,= n). These assumptions seem reason-
able in many cases.

The solution of differential eq. (3) is a glow-curve
function of three parameters (s, 7, and £) and initial con-
ditions (heating rate of the sample and the initial trap fill-
ing).

The differential eq. (3) cannot be solved analyti-
cally. This problem has created difficulties in the anal-
ysis of the TL process and calculation of TL parame-
ters. Areasonable solution was to use the general order
kinetics model [4-6]. The application of the general or-
der kinetics model is quite satisfactory in radiation do-
simetry, but it cannot be used to characterize the mate-
rial since it does not provide accurate data for the
actual parameters of the physical process.

The value calculation of trap activation energy
by the general order kinetics method is subject to error
if the best fitted value of the kinetics order is found to
be different from 1 and 2 [1]. The method based on the
kinetics order has serious deficiencies: first, a fixed
parameter to represent an evolving process and, sec-
ondly, instead of an experimental value, an assumed
value which cannot correspond to reality [7].

A number of methods for the calculation of par-
ticular kinetic parameters of phosphors exist in litera-
ture. However, no calculation model or method is
based on the differential eq. (3) which at the same time
contains analytical solutions for all parameters.

The calculation model, known as the Initial Rise
Method, uses the general characteristic of the TL pro-
cess. Namely, that starting part of the glow curve is a
partof exponential growths. This method uses only the
starting part of the glow curve described by the differ-
ential eq. (3) to calculate activation energy values.
This is the so-called analytical-graphical calculation
method. In fact, eq. (3) in this method is used only to
prove and affirm the general characteristic of the expo-
nential phase of the TL process. Calculations of pa-
rameters based on other mentioned methods lack the
kinetic analysis of processes with phosphors as a basis
and are not comparable with the solution obtained di-
rectly from the differential eq. (3) for an ideal phos-
phor. The best and most accurate values for kinetic pa-
rameters of ideal phosphors could, consequently, be
obtained only by solving the differential eq. (3). In this
report, we demonstrate the method for the solution of
the equation which gives the most accurate calculation
of kinetic parameters of activation energy, frequency

I =

parameters, and retrapping factors. To the best of our
knowledge, our method offers an accurate calculation
of parameters not only by describing the glow curve,
but the TL process itself as well. At the same time, our
method offers exact calculations of kinetic parameters
obtained from the experimental glow curve while fol-
lowing the changes in parameters with the changes in
starting conditions.

KINETICS OF AN IDEAL
PHOSPHOR MODEL

TL emission is a result of the heating of phosphor. In
case of a constant heating rate R [K/s], temperatures 7' [K]
are given by 7= Rt + T, where ¢ [s] is time and 7{,(K) is the
initial value of TL material temperature. Then, the emis-
sion intensity of thermoluminescence is

)

sexp| ——— |n
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The integral of the function of the TL glow curve
for the temperature interval from zero to infinity
equals n, by definition. Parameter n, is the initial elec-
tron trap concentration. The initial value of tempera-
ture can be zero, because the value of the part of the in-
tegral in the range of 0 to 7|, always equals zero.

First, a new parameter w, [cm ] is defined. Pa-
rameter weg1s the integral of the normalized TL curve
iy from initial until the end of TL emission [4]. Param-
eter w, [cm~] can be defined as

Wefp = :j iy dT (%)

m 0

where /I, is the maximum of TL intensity in the expres-
sion /= 1I,in. Inthis case, I, is a dimensionless parame-
ter. From eq. (5), it is evident that /,, equals to one
when ng=weg. The maximum value for the experimen-
tal TL function 1,, is difficult to obtain; for practical
calculations of kinetic parameters, normalized curves
are used. Substitution N=w,gin eq. (4) gives the func-

tion EY ,
sexp| ——— |n
i dn 1 kT

T dT R n+r (Wegr —n)

From this function, its normalized form iy could
be obtained by taking n, = w The integral of func-
tion (6) for heating temperature interval from zero to
infinity equals w.g, and, assuming that other parame-
ters rest unchanged, the value of the function maxi-
mum equals 1. The function (6) has its maximum 7, =1
only if f;, =1, for other values of £, the function maxi-
mum is less than 1 (meaning that the concentration of
electrons in traps could not exceed the trap concentra-
tion). If the value of the trap filling at start is f;, < 1, the
integral in eq. (5) could be calculated and the starting
concentration of electrons in traps is n, = w. Relation
N = w also holds. On the basis of the eq. (5), it fol-
lows

(6)
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Wep = = [ indT (7)

mf 0
where I, is the maximum of TL intensity if f, < 1.
From this equation it is obtained that [,s = fo, since
W/Weff = I’l()/N=f0.

Also, characteristic and important parameters
in equations for kinetic parameters calculations are
beg [em™], b [em™], and . Parameter b is the inte-
gral of the normalized TL curve (6) from 7}, until the
end of TL emission for f, = 1 and is equal to the con-
centration of electrons in traps at the moment 7= T,

[4]

o0
ber = [iydT (®)
T,

m

For f, < 1, the same parameter is referred as b,
and the relation b/b = f, holds in that situation. Sym-
metry factor 1, is obtained by dividing parameters b g
and wg. It should be noted that the value for symmetry
factor pu is always the same for the same phosphor en-
tity, regarding different values of £, so b /W = biw.
The normalization of the TL glow curve does not
change this relationship [2, 4]

b b
Py =—= )
Cow 0Weff
Differential eq. (6) can be solved by separation
of variables

et (e =) _n)dn =1sexp(—Ede (10)
n? R kT
When the kinetic process is monitored from the
initial heating temperature 7, = 0 (ny=w=/fyw) to the
temperature of the maximum glow curve 7= T, (the
maximum concentration of electrons in traps is n,, =
b), definite integrals are obtained

b ntr (W —n) 1 E
- ——= —~dn=—s|exp —— |dT (11
j b= ] {5 Jar v

JoWerr n

This equation can be rearranged and tabular
integrals obtained by the left-hand expression
b b
dn dn
—(1—’”1)]. — = Wl J — =
fower JoWess

T;T\
=isj exp(—E)dT (12)
R kT

followed by

(1—rt)1n(foweffj+weffrt(1_ 1 jz
b b foWes

T
=1sjmexp[—E)dT (13)
R kT

The integral on the right side of the expression (13)
is known as the integral of the Boltzmann factor. For an
integral of this type there is no exact analytical solution,
but a number of approximations could be successfully
used: Frank-Kamenetskii approximation [8§]

Ty E kT E
exp| —— |dT ~ —2exp| — 14
(I) p( kT] E p( kij (14)

or, a more accurate Gorbachev approximation [8, 9]

T;n T
| exp(—E)dT " UL exp(— £ j (15)
0 kT 4 kT,

Based on eq. (13), and by using the approxima-

tion (15), the equation for calculating the value of the
frequency factor is obtained

E 2 E 1
S:R(ld",iJrTmJexp(%]{(l_rt )ln{us}r
o1
| 16
+f0 [:us J:| ( )

By replacing the term A = 2kT,/E in the above
equation we obtain

s :—RE; exp[EJ (1-r, )ln[l}r
kT, kT,, Hs

o 1—1}}1 A 17
+f0 (:us (+ ) ( )

When the resulting expression (17) is substituted
into (6), the equation describing the glow curve of the
ideal phosphor model is finally obtained

E E 1
exp(kTm —ij(HA ){(l—rt )ln(ﬂs]—i—

+r‘(1—lﬂnz
fO Hg n+rt(weff_n) (18)

_dn _E
dT &7,

EQUATIONS FOR THE
CALCULATION OF TL PARAMETERS

The first derivative of the model function of ideal
phosphors (6) is one of the equations that connect the
kinetics parameters [ 10]. The position of the glow curve
maximum is at the point where the first derivative
equals to zero. By differentiating eq. (6) we obtain

E
sexp| —— |n

di _1d ( ij (19)
dI' RdAT | n+r (Wys —n)

The first derivative of the function (6) is ob-
tained by the differentiation of the complex function

di 1 1

AT Rntr, (weg —m)P

LA —

_;7 [n+7 (Wegr —n)]{seXp[—fT)nz }} (20)
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After performing the differentiation, the follow-
ing expression is obtained

di_1 ! .
AT R[n+r (we —n))

'{[n + 1 (Wegr —n)]sexp(—gj(—2ni+“{?2 n’ j—

—sexp[—lijnz(—Hr‘i)} 1)

The requirement that relation (21) equals to zero
means that the numerator of this expression equals to
zero. When the function (6) reaches its maximum, then
T=T,,i=fy;=fy[cm K] and n, =5

E
[b+r (Wegr —b)]{—zbfm +k7’”2,b2}_ 22)

_bz[_fOi +1, f0:1=0

It should be noted that the variable 7 is expressed
in cm K" units, so that f;, is not dimensionless. After
rearranging the expression (22), it is obtained

(1+rt Weit —rtj ) kb =1-r, (23)
b JoikT,

Now, a new parameter o 4 [K] is introduced.
This parameter is called: part of the effective value of
halfwidth from the right side of the glow curve and
was defined by the following relation [4, 5]

o0
Sep = [ingdT @4
T,

In eq. (24) iy, is the same function as iy but
dimensionless. More details relating to parameter
can be found in the following papers [4, 5]. For f, <1,
the same parameter called part of effective value of
halfwidth from the right side of the glow curve is re-
ferred as 6. By comparing eqs. (8) and (24), it could be
seen that parameters 6 . and b, then & and b, are nu-
merically identical but dimensionally different. It is
evident for a factor Eb/(f;kT, %) from eq. (23), that the
following identity applies

1 E,_ 1 E _ E
foi KTE  fo kT2 fokT} (25)
Based on eq. (25), eq. (23) could be rearranged.

The value of activation energy may now be calculated
from the rearranged expression (23)

5o STy fokts +1 2= fo)
5 Soms+ri(=pfy)

(26)

As previously discussed, 0 4= 0/f,. Now, a new
parameter is introduced, defined as
/= E5eff

e (27)

We call this parameter kinetics order /, as it is de-
fined with the same relation which was earlier ob-
tained for first-order kinetics, second-order kinetics,
mixed-order kinetics and general-order kinetics mod-
els [4-6, 11-13]. It should be noted that parameter /, de-
fining the kinetic order, is not defined through the
model of general-order kinetics differential equation
and is not connected to this model.

From eq. (26), the kinetics order parameter can
be written as

| Jotts 1, C=p i)

Jotts +r (1= fo)

TL intensity can be calculated at the point of
maximum 7 = T, using eq. (18). It is obtained

(28)

o :E2(1+A){(1—rt )h{l}
kT,

m N

7 ( 1 ﬂ b*
+— —1||—
f() Hg b+rt(weff_b)
As in the case of eq. (22), it should again be
noted that the value for 7 has its dimensions cm =K,
giving dimensions to f; at the point of TL intensity.

Applying the definition of / (27) and identity
(25), eq. (29) is written as follows

_ ps fol1+ In(pes YI(1+A)]
Z(1+A)[;usf0 ln(:us )+ 1_ﬂs]_(l_lusf0 )

When parameter 7, from eq. (30) is substituted in
eq. (28), the equation for the calculating kinetics order
is obtained

I (14 A)[1- g + In(ug )]+
+H(A+A)[-1+ p, —2In(pug )]-1=0

The attained equations show that the calculation
of the kinetics order parameter does not depend on the
filling factor of traps. It is, therefore, possible to calcu-

late the value of activation energy from the data ob-
tained from the normalized glow curve. However, the

(29)

(30)

t

€20

L . B S s S S B e B
10 12 14 16 18 20 22 24 26 28 3.0 32
Kinetics order /

Figure 1. Dependence of the symmetry factor . on the
kinetics order /, for different values of A
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exact values of the frequency factor and retrapping
factor can, in general, be calculated only in the case
when the value of the filling factor of traps is known.
Equation (31) allows the calculation of the kinetics or-
der parameter to depend on the symmetry factor 1, and
factor A (fig. 1).

Further replacing A, from eq. (27)
A= 2kT, m _ 2 eff
E Tl
in eq. (31), a quadratic equation for the analytical cal-
culation of the value of kinetics order is obtained

PI1=pg +1n (ug )]+l{(2‘;°ff—1j [1—p +

m

(32)

+1n (1, )]~In (us)} +25Tif[us 1-2In (g )]-1=0

m
(33)
Equation (29) can be written as
1+t 1 ro=
fO Hs

=1(1+A){(1—rt)1n[:j+2)[;—1}} (34)

From (28) it is calculated
Jous (1=1)

T2l ugfy (D)
and substituted in (34)

(35)

t

2=l fy(I-1)

:l(1+A){(l—rt)ln(ylsJ+;;(:s—IH (36)

Using egs. (36) and (27), the equation for the fre-
quency factor (17) is given in the following form

s = R exp[ E J (37)
5eff[2_l+:usf0(l_1)] kTm

In cases where f; < 1, when this value is three or-
ders of magnitude smaller than one, e. g. f, < 0.001, it
turns out that (2 — /) > u (I — 1) and the following equa-
tion could be used for frequency factor calculation

s= R exp( £ J (38)
5eff (2_1) kTm
Atthe same time, eq. (35) could be rearranged as
-1
fo 2-1

In general, eq. (37) is one and includes solutions
for both first and second-order kinetics. For /=1, us-
ing eq. (27), eq. (37) is transformed in eq. (40) [14]

§=—

R exp E |_RE exp E (40)
5eff kTm kTys kTm

representing the equation for calculating the fre-
quency factor in a first-order kinetics model.

For / = 2, analogously, and with approximation
used in second-order kinetics calculations, that symme-
try factorisregarded as i1~ (1 +A4)/2, so that one obtains

eXp| — |=
:usgeff kTm

1 RE E RE 1
=— exp| = €Xp|
2ug kT2 kT ) kT2 (1+4) "\ kT,

(41)

Equation (41) is a well-known instrument for
calculating the pre-exponential factor s» for sec-
ond-order kinetics calculations [15].

Equation (28) describes all of the three
well-known conditions governing the kinetics process
for an ideal phosphor:

— The situation when the retrapping probability is
insignificant: retrapping factor 7, = 0, and one ob-
tains /= 1.

— The situation when the trap filling is small and
there is retrapping: fo = 0, > 0, and / = 2.

— The situation when the retrapping probability
equals the probability of recombinant lumines-
cence; retrapping value 7, =1, and / = 2.

Equation (28) also describes the cases related to
the high values of the retrapping factor, i. e. when 7,
(1—foug) > fout. Inthat case, the retrapping factor tends
to infinity, » — . As symmetry factor values are about
0.5, f; values are in a 0 to 1 interval. It could thus be
concluded that the maximal value for / is obtained for
maximal f, i. e. when f, = 1. At the same time, this is
the final limit of the ideal phosphor model kinetics

Imax :2_/’lsf0 (42)
1- Hg f 0

Equation (42) determines the maximal value of
the preselected kinetics order A. From fig. 1, it can be
seen that for4 =0.1, the value / ,, = 3.04 is obtained.

It turns out that, for high values of 7, the value of
the kinetics order parameter is independent of the
retrapping factor, but could be dependent of trap filling.
Equation (31) (fig. 1), shows that kinetics order values
have their maximal value for every single value ofA. In
practice, this means that in the vicinity of this maximal
value even a high increase in the retrapping factor value
has no influence on the kinetics order. Kinetics order
values could not be higher than 3.2 for symmetry factor
U, in the range 0.38 <p, < 0.6 (4 = 0.15).

The value of the retrapping factor, as seen from
eq. (35), is very high and tends to infinity when (2 - /) =
=t fo(I—1). In fact, in this situation, it is impossible to
calculate parameter r, from the shape of the glow
curve.

In cases of high values of the retrapping factor in
eq. (16), one can obtain

s@ = sty =

s’:sﬁ:
_rl E 2 B 1
- (kT,mejeXp(kijHus 1] foln(usﬂ

(43)
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i. e., the pre-exponential factor s' is obtained as a quo-
tient of frequency factor s and ry/fo.

CALCULATION METHOD

For the calculation of kinetic parameters /, E, s,
and r,, the heating rate should be known, while other
parameters are obtained from the normalized experi-
mental glow curve. The kinetic order is calculated
from eq. (33). For calculation of kinetic order / based
oneq. (33), it is necessary to normalize the experimen-
tal glow curve by putting 7, = 1, and then determine
the value 7, of the maximum temperature and
integrals w g and bog (8.5). The w g value is obtained
from eq. (5) by the integration of the normalized ex-
perimental glow curve from starting temperature 7, to
the temperature at which all traps are empty. The inte-
gral by and O is obtained from (8) and (24), respec-
tively, by integration of the normalized experimental
glow curve from maximum temperature 77, to the tem-
perature at which all traps are empty. It is clear that
both of these values are identical.

The value of symmetry factor x is calculated
from (9) as relation b g/w . Parameter w g is obtained
by the numerical integration of the normalized glow
curve. There are a number of methods of numerical in-
tegration; in this report, the Romberg method was
used. By solving quadratic eq. (33), two values for ki-
netic order / are obtained.

Of the cases presented in fig. 1, sometimes two
real solutions are obtained. When so, one should cal-
culate the parameters for both situations and take the
solution which corresponds to the experimental glow
curve. In most cases, only numerical results between 1
and 2 are taken into account.

The obtained kinetic order value / is further used
for calculating activation energy E, according to eq. (27).

The values for retrapping factor r, and frequency
factor s could not be exactly calculated if the trap fill-
ing factor f; is not known. If f;, is known, then r, is cal-
culated from egs. (30) or (35), and s is calculated from
eq. (37). Both egs., (30) and (35), give the same re-
sults.

In practice, with thermoluminescent materials or
dosimeters, the values of the trap filling factor are of-
ten very small. For f, <0.001, the influence of the trap
filling factor on the frequency factor could be ignored
and the frequency factor could be calculated from eq.
(38). The ratio r/f, obtained from eq. (39) is under the
same restrictions.

RESULTS

The equations for calculating the kinetic parame-
ters of a TL model for an ideal phosphor were tested on a
number of computer-simulated glow curves. The values
of parameters that characterize phosphors (7 £, s) and pa-
rameter f;, which determines the initial value of relax-
ation, were selected for the model of the ideal phosphor,
shown by the differential eq. (6). For simplicity of calcu-
lation, it was taken that, in all cases, the heating rate of
phosphors is R =1 K/s. Parameter values were chosen so
that the values of the kinetics order were between 1 and 2
and corresponded to the values that characterize phos-
phor in dosimetry. For certain characteristic cases, these
values are shown in tab. 1. Simulated glow curves were
obtained for parameter values given in tab. 1 and, using
the numerical method of Runge Kutta I'V order, for solv-
ing the differential eq. (6). Parameter values g, W, and
ug were numerically calculated and are also shown in
tab. 1. Romberg's method was used for the calculation of
b.g, and w g integrals. The values of maximum tempera-
tures were read from the glow curve and are shown in
tab. 1.

Based on parameter values of b {0 ), tt and T,
from tab. 1, and by using the proposed procedure for
calculation, it is possible to calculate the values of pa-
rameters of glow curves E, [, 1, A, and s. Table 2 shows
the calculated values of these parameters, £, [, 7., A,
and s,. The relative errors of calculation of parameters
E, s, and r can be determined since their exact values
are known. The exact values of parameters / and A are
not known, so it is not possible to calculate their rela-
tive errors. The accuracy of individual parameters cal-
culation can be estimated by analyzing the values of
the relative error. The said analyses also provide an as-

Table 1. Parameter values for computer simulations of glow curves for the model of an ideal phosphor

No. E [eV] s[s] fo r Werr [em™] | b [em™] s T [K]
1 1.00 10" 1 0.08 34.525 14.684 0.4253 383.871
2 0.10 10° 1 0.18 17.516 8.4388 0.4818 86.1556
3 0.14 3-10° 1 0.3 17.094 8.4697 0.4955 96.7878
4 0.20 10 1 0.433 17.922 9.0800 0.5066 114.479
5 0.40 10" 1 0.6 24.932 12.817 0.5141 184.696
6 0.20 108 0.5 0.2 17.503 8.6551 0.4945 115.441
7 0.20 10 0.1 0.04 17.403 8.5124 0.4891 116.112
8 0.20 108 0.01 0.004 17.391 8.4903 0.4882 116.254
9 0.20 108 0.001 0.0004 17.391 8.4888 0.4881 116.268
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Table 2. Calculated values of glow curve parameters
No. le A, E. [eV] dE/E [%] Se [Sfl] ds/s [%] e dr/r [%]
1 1.156 0.0662 1.000 3.93.107* 1.01-10" —0.75 0.07310 8.63
2 1.308 0.1498 0.099 0.86 8.88-10" 11.15 0.17655 1.91
3 1.462 0.1197 0.139 0.47 2.78:10° 7.58 0.29844 0.52
4 1.605 0.0989 0.200 0.21 9.59-107 4.05 0.43656 -0.82
5 1.737 0.0800 0.398 0.42 8.99-10° 10.06 0.58994 1.68
6 1.507 0.0995 0.200 5.99-107° 1.01-10% —0.63 0.20291 —1.45
7 1.467 0.1001 0.200 -0.10 1.03-10° -3.43 0.04108 -2.70
8 1.460 0.1000 0.200 —0.13 1.04-10° —3.47 0.00444 -3.54
9 1.459 0.1001 0.200 —0.13 1.05-10° —4.51 41510 —4.15

sessment of the validity of the method used for the cal-
culation of parameters.

For a typical glow curve of dosimeter TLD700H
("LiF: Mg, Cu, P) [16-19], the same procedure of cal-
culation is applied, as well as the simulated glow
curves. Values w.;=21.871 cm™, b= 9.0078 cm™
(O =9.0078 K), u, = 0.41187, were calculated from
the glow curve. The heating rate of phosphor was R =
= 1 K/s. Finally, the values of the TL parameter were
calculated /.= 1.15, E,=2.564 eV and, assuming that
fo = 1, the following values were obtained: s, =
=7.05-10% 57" and = 0.06776.

The requirement f, = 1 is never fulfilled in
dosimetric application. In cases where f, < 1, when this
value is three magnitude orders smaller than one, e. g.
f0<0.001, one can use the eq. (38) to calculate the fre-
quency factor. In that case, the value of the retrapping
factor depends directly on the filling factor of traps and
can be calculated from eq. (39).

When egs. (38) and (39) are used, the following
values of parameters s, = 7.56:10%° s7' and r./f, =
=0.07268, are obtained. Based on these results and the
above assumptions, it can be concluded that r,
=0.07268:f;, or 7, < 0.07268-107. This means that all
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Figure 2. Experimental TL glow curve for a TLD700H
dosimeter ('LiF: Mg, Cu, P) (solid line) and glow curve
obtained by calculation with the use of a model of an
ideal phosphor (solid square)

glow curves with the above calculated values of pa-
rameters are almost identical.

Based on the calculated values of kinetic param-
eters of the process, it is possible to reconstruct the real
physical process by using differential equation models
and calculated parameters. The obtained parameter
values E = 2.564 ¢V, £,=0.001,5=7.56-102 57!, and
7= 0.07268-10~3 were substituted in the differential
eq. (6). The differential equation was solved numeri-
cally with these parameters in order to obtain the glow
curve. The results are shown in fig. 2. The figure
shows that the calculated glow curve completely coin-
cides with the experimental curve. It can thus be con-
cluded that the dominant peak of the glow curve for
TLD700H phosphor may be described by using the ki-
netics of the ideal phosphor model.

For a practical illustration of the TL curve kinet-
ics parameter for calculating experimentally obtained
values, the glow curve of TLD700H dosimeter was se-
lected.

The measurement error for TL dosimeters de-
pends on a number of factors. Besides the inherent in-
stability of traps which boost the laboratory measure-
ment error to about 2%, statistical uncertainty should
also be calculated; it is usually less than 5% [20, 21].
So, the total expected measurement error for the
TLD700H dosimeter is considered to be less than 10%
[22].

The glow curve of the TLD700H dosimeter is
convenient for demonstration of the calculation
method because it has a single isolated dominant max-
imum resembling the ideal glow curve. Consequently,
experimental and calculated glow curves revealed
practical identity in shape.

Interestingly, the value of the frequency factor
was unexpectedly high, something also noted in calcu-
lations based on other models.

It should be indicated that our proposed model
for calculation has nothing in common with calcula-
tions based on the general kinetics order model of cal-
culation. Namely, among equations based on gen-
eral-order kinetics, the retrapping factor r, does not
exist at all, so there is no possibility for 7, to be calcu-
lated [6]. It has also been shown earlier that, based on
the general-order kinetics model, the value of the fre-
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quency factor s could not be calculated. Only the value
of the pre-exponential factor s = s£. ! [4, 23] could
be calculated. Accordingly, only values obtained in
calculation of trap depth or activation energy £ could
be compared. This value is calculated by use of empiri-
cal interpolation-extrapolation Chen's equations [5,
23]; the exactness of calculation is, after all, reflected
in the name of the method.

As an illustration, the values of activation energy
are calculated in frames of interpolation-extrapolation
equations for the emission curve at points 4 and 8 from
tab. 1, and the following results, respectively, obtained:
E=0.228 eV (relative error 14%) and E=0.236 eV (rel-
ative error 18%). As for pre-exponential factor values,
the results are s) =2.155-10° s~ (relative error 20.55%)
and s = 3.31-10° s! (relative error 32.10%). For the
first calculation, the value for £, was taken to be f, = 1,
meaning that the pre-exponential factor value is the
same as s = s 1! = 5. However, in the second case, the
value for f, was f, = 0.01 and, in final calculation, the
relative error was greater for an order of magnitude. A
simple comparison with our results reveals the qualita-
tive and quantitative superiority of our method of pa-
rameter calculation.

DISCUSSION

The method for parameter calculation described
in this report is based on the concept of kinetics order.
In order to obtain the value of the kinetics order which
would be correct for the ideal phosphor model, it is
necessary to define this parameter in a new manner.
This is done through the equation for calculating acti-
vation energy. This form of equations is known from
models that have previously been investigated in de-
tail (models of first, second, general and mixed-order
kinetics) [1-6,12-15, 23-25]. It has been assumed that
the kinetics order parameter is not characteristic of the
TL process, while the glow curve is. In this manner, the
variation of the value of kinetics order parameter dur-
ing TL relaxation is avoided. The parameter of kinetics
order in the model of ideal phosphor has nothing in
common with the model of general-order kinetics.

This concept allows simple equations for the cal-
culation of parameters and a better understanding of
the TL process.

Equations for the calculation of parameters £
(32), (30 and 35), and s (37) are obtained directly
from differential eq. (6) which describes the ideal
phosphor model. For known starting values of f, and
heating rate R, all parameters of the differential equa-
tion, or TL kinetics determining the glow curve, could
be calculated. The calculation method described
above includes all parameters present in the differen-
tial equation and represent a complete algorithm. All
equations for the calculation are derived from the ba-
sic differential equation and should, therefore, be re-

garded as precise. The requirement for calculation cor-
rectness is that the specimen has characteristics close
to the ideal phosphor i. e., that contains one kind of
trap and one kind of center of luminescence.

Because of its accuracy, the described model
could notbe used as an universal model or a non-selec-
tive one for all phosphors. However, for the same rea-
sons, the described model could be used for recogniz-
ing ideal phosphors.

For the ideal phosphor model, only the activa-
tion energy value E could be determined directly from
the glow curve. To determine the values for parame-
ters 7, and s, the trap filling factor £, should be known.
However, this is not a significant obstacle as, for f; val-
ues starting from £, < 0.001, it is possible to calculate
the frequency factor s (in reality, condition f, <0.001 is
generally fulfilled). Iff,<0.001, it is possible to obtain
the equation for r/f, quotient calculation, eq. (39).
This quotient is always the same for the determined ki-
netic order / and for all values £, < 0.001. This condi-
tion enables the calculation of all parameters of the dif-
ferential eq. (6) which determine the TL curve. With
the calculated relation r/f,, the value f that satisfies £
<< 0.001 could be arbitrarily chosen. For this particu-
lar value of £, r, is calculated, and both f;, and r, are in-
serted into eq. (6), resulting in a glow curve with the
same shape for all values of r/f; and f, <0.001. The re-
lation r/f, is significant for determining the glow
curve shape.

Detailed analysis reveals that the kinetics order
value could be higher than 2, but not significantly. For
values of factor A between 0.05 and 0.15, the kinetics
order value is less than 3.2, meaning high trap filling
(fo>0.01).

Quadratic eq. (33) has two solutions. The possi-
ble solutions for parameter / compared to u are pre-
sented in fig. 1. From fig. 1, it can be seen that the two
solutions of (33) are real values near the function max-
imum. For values obtained for parameters 7}, tt,, and
O there are two different viable real values for 1. To
determine the proper value, obtained TL curves are
compared to the experimental curve. The calculation
curves for 7, = 114.53 K, p1,=0.528, b= 10.27 co >
(0= 10.27 K), and f, = 1 are presented in fig. 3. The
calculated curves are very similar. However, the solu-
tion on the right side of the curve maximum (fig. 1)
gives higher values of halfwidth (FWHM- fullwidth at
half maximum).

The calculation algorithm could be simplified if
the trap filling is very small (f;, < 0.001), so the / value
could not be higher than 2. With this assumption, all
solutions are on the left from the maximum of the func-
tion p (/) in fig. 1. This assumption is almost always
fulfilled in practice.

Results show that the parameters of simulated
glow curves for the model of ideal phosphors can be
calculated with great precision. The error, obtained by
calculating the value of activation energy, is generally
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1.0 The calculation results are close to real situations and

correlated to the realistic physical parameters.
"5 05 Equations for the calculation of kinetic parame-
£ ters 7, s, and £ of TL processes are theoretically de-
2 rived for the model of an ideal phosphor. The calcula-
éﬁ 0.6 tion method of TL relaxation parameters for the ideal
phosphor is based on the kinetics order concept. The
0.4 kinetics order is defined by an appropriate equation for
| models of the first, second, general and mixed-order
kinetics. In this report, it has been proved that the same
02 form of the equation can be used in the ideal phosphor

! model.

- In our research, theoretically grounded on physi-
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Figure 3. TL glow curves obtained from differential eq.
(4) for following parameter values: 7,,=114.53 K,

s =0.528, by =10.27 cm™ S =10.27 K) and fj = 1.
Obtained solutions are E =0.2,4 = 0.1,/ =1.82 for curve
1, and E = 0.314, A = 0.063, / = 2.85 for curve 2

below 1%. The resulting relative error of the fre-
quency factor is the greatest because of the expression
for its calculation that includes the exponential func-
tion. The largest relative errors are obtained for the
values of factors A > 0.15 and values / = 2, because in-
creasing the value of parameter A causes a decrease in
the accuracy of the approximation (15).

In practice, it is very difficult to find materials
with an isolated TL peak which can be described by a
model of an ideal phosphor. Closest to this model is the
dominant peak that occurs during the processing of
dosimeter TLD700H. Kinetic parameters are, in this
case, often calculated by using the first-order kinetics
model or the general-order kinetics model. Some au-
thors, using the deconvolution method, proved that the
shape of the dominant peak corresponds to the model
of first- order kinetics. As small peaks overlap with the
dominant peak in the deconvolution process, it is pos-
sible that such changes in shapes of small peaks will
make the shape of the dominant peak to correspond to
the first-order kinetics model. It has also been noted
that deconvolutions with a general-order kinetics
model attain better compatibility with the experimen-
tal curve. Since the model of general order kinetics is
an approximation of the model of an ideal phosphor,
better accuracy and compatibility with the experimen-
tal curve is expected when the model of the ideal phos-
phor is applied. Results obtained show that the model
of'an ideal phosphor faithfully describes the dominant
peak, not only in relation to the asymmetry of the
curve, but also to its shape.

CONCLUSIONS

A new method for calculating the relaxation of
kinetic parameters in an ideal phosphor is developed.

cal principles, the kinetics order is redefined as a pa-
rameter defining the glow curve instead of being a pa-
rameter that defines the TL process. The kinetics order
parameter has a physical interpretation which is given
by eq. (27) and corresponds to interpretations by the
first and second order kinetics theory. Equation (27) is
a general equation, theoretically defining the kinetics
order parameter for an ideal phosphor model. The val-
ues of kinetics order parameters are calculated accord-
ing to eq. (33). Their accuracy depends on the compat-
ibility between experimental and theoretical glow
curves.

Equation (27), which defines the kinetics order
parameter of the ideal phosphor model, is identical in
form with the equation which defines the kinetics or-
der parameter for the general-order kinetics model.
However, while being formally identical, some funda-
mental difference exists. The kinetics order parameter
for the general-order kinetics model is calculated by
the differential equation of the general-order kinetics
model. This calculation method is often treated as a
mathematical formalism because it cannot be success-
fully applied in a real physical model. At the same
time, some significant parameters are not included in
the general-order kinetics model. Nevertheless, the
overall calculation is very precise within the limits of
the general-order kinetics model. The main obstacle is
that calculation does not correspond to any known real
physical model describing TL kinetics. Therefore, the
accuracy of calculation using this model is fundamen-
tally inferior to the calculation based on the physical
model, which we propose. We demonstrate it by com-
paring the results obtained by these two methods of
calculation in parallel.

The results obtained prove that the calculation
method for the model of the ideal phosphor may be
used for calculating the targeted parameters with high
accuracy. However, in order to obtain the most precise
calculation results, accurate determination of T, b,
and w, g parameters is necessary.

The values of physical parameters for a domi-
nant peak of a TLD700H (7LiF: Mg, Cu, P) dosimeter
are evaluated based on the method for parameters cal-
culating the ideal phosphor model. The resulting glow
curve coincided with the experimental curve. The ob-
tained experimental glow curve corresponds to the
theoretical model of ideal phosphor and the values of
physical parameters describing the TL process can ac-
curately be calculated.
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3apasko M. BEJHOBU'h, Munoum b. IIABJIOBU,
IHasae A. XAIINh, Munopap I1. JABUIOBU'h

N3PAYYHABAILE ITAPAMETAPA 3A MOJEJ] UIEAHOI ®OCPOPA

Teopujcku cy u3BeleHE jeqHAUYMHE 3a W3paUyHaBame IapaMeTapa KHHETHUKE TEPMO-
JYMUHACIEHTHOT TIpoIleca 3a Mojesa umpeainHor ¢ocdopa. 3a mpopadyH cy KopuimheHe BpPEeTHOCTH
nmapameTapa Koje cy mfoOnjeHe U3 KpUBUX HCHjaBama 1 (PyHKUIM]ja KPUBE NCHjaBamba Yy HOPMAIIM30BAHOM
06nuKky. Ha ocHOBY oBe (pyHKIHje M3Be[leHE CYy jelHAUMHE 3a M3pauyHaBambe aKTHBAIMOHE €Hepruje,
¢ppekBeHTHOT (pakTOpa U pakTopa peTpanoBama. CBU U3pa3u Baske Y OMINTEM CIy4ajy Kajja je BpegHOCT
¢hakTOpa NONMymEHOCTHU Tpamnosa f < 1.

KonmenT pepga KMHETHKE KOPHUCTH Ce 3a MpopadyyHe IapaMerapa, a mapameTap pel KUHETHKE
neduHMIIE ce ToMohy peamHuX (PU3WIKUX MapameTapa. PesynraTu 1o6mjeHn aHaIM30M CHHTETHIKAX U
eKCIIepUMEHTAIIHAX KPUBUX HCHjaBama 3a ochopHe maTepmjane omoryhasajy ay0ibe pazymeBame
mpoleca TepMOIYMAHHUCIICHTHE KHHETHKE.

Kmwyune peuu: tiepmoaymuHucyeHyuja, peo KuHeiliuke, Kpuea ucujasarbd, mooea KuHeiliuxe,
aKiuBayUoOHa eHepauja



