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A method for approximate analytical solution of transport equation for particles in plane ge-
ometry is developed by solving Fredholm integral equations. Kernels of these equations are
the Green's functions for infinite media treated approximately. Analytical approximation of
Green's function is based on decomposition of the functions into terms that are exactly analyt-
ically solved and those which are approximately obtained by usual low order DPN approxi-
mation. Transport of particles in half-space is treated, and reflection coefficient is determined
in the form of an analytical function. Comparison with the exact numerical solution and other
approximate methods justified the proposed analytical technique.
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INTRODUCTION

Usual analytical treatment of the particle trans-
port in a finite medium prefers application of Placzek
lemma which enables formulation of integral equa-
tions for angular fluxes on boundary surfaces of differ-
ent media [1, 2]. The aim of this work is to develop a
method for analytical approximate determination of
Green's function for infinite medium. It will enable to
transform the application of Placzek lemma into solv-
ing the Fredholm integral equation or system of equa-
tions. In this way solution of singular integral equa-
tions or numerical solution of integral equations is
omitted. That is way a method is proposed for decom-
position of transport equation Green's function into
terms that can be analytically exactly solved and terms
which are determined by low order approximate solu-
tion of equation (DPO and DPl methods) [3].
Application of thus determined Green's function per-
mits further analytical treatment of integral equations
and the analytical solution of reflection coefficient for
half-space. Proposed decomposition for solving trans-
port equation is not bound to application of Placzek
lemma, but it might be used for treatment of particle
transport in finite media in the classical way with
boundary conditions [4, 5].

The procedure is carried out with an assumption
that the scattering in the medium is described by syn-
thetic scattering law which allows isotropic particle
scattering and scattering straight ahead [6-8]. For such
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a function it was possible to formulate similar proce-
dure as for the case of strictly isotropic scattering of
particles. Expressions for the Green's functions de-
pendent on the space variable xz 0 are developed and
solution of integral equation and determined reflection
coefficient for half-space is presented. The obtained
results are compared to the exact calculations and
other verified approximate methods for solving the
half-space transport problem [9, 10].

APPROXIMATE GREEN'S
FUNCTION IN PLANE GEOMETRY

Let the particles scattering in a medium be de-
scribed by the synthetic scattering law in the following
form [7] 1 T¢

f(u,u’)={+m5(u—u’)} (1)
2n| 2
with conditions: ¢/ +m=1and ¢, m > 0. Here, i and u'
are the cosines of particle angles befor and after scat-
tering. Then the Green's function in plane geometry
G (x, i, xo, o) 1s a solution of the transport equation

oG (x, 1, x,,
u(g—x‘)/l(’)JrG(x,u,xO,uo):

1
c/ / '
:? J‘G(X,‘Ll »X0 5 Ho )d:u +CmG(x>,U,x0’,u0 )+
-1

+0(x—x0 )0 (u—pyg) (2

where c is the mean number of secondary particles per
collision.
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Further, it will be considered that x, = 0.
From eq. (2) we separate the flux of unscattered
particles G°
—(1—cm)x/u
G°(x, 1, p19) = S(u—po)  (3)
and split the solution of transport equation into two
terms G and G~ dependent on the particles directions.
By applying Fourier transformation on eq. (2) we ob-
tain

(1—cm+iku)G* (k, ) =
clt YT N
=5JG (k1" Ydu +5JG (k1 )du' +
0 -1

+8*(k), uZ0, (4)
and
() —— 5)
2 1—-cm +iku,

+oo .

G* (k)= | Glx,p,xq, 19 e “dx  (6)
where for the sake of brevity x and y¢ are omitted; i is
the imaginary unit, and £ — the complex variable.

In order to derive the Green's function approxi-
mately as an analytical function we will propose dif-
ferent shapes of G " and G~ decompositions, depend-
ing on the half-space (xZ 0) where these functions will
be applied.

In the case of half-space x > 0 we use the follow-
ing decomposition

G* (k1) =G (k, 1) (7)
G‘(k,u)=éGl_(k,u)+5_(k,u) 8)

where G ' presents the flux of /-times scattered parti-
cles moving in directions u < 0 after each collision. G*
and G~ are the components of Green's function calcu-
lated approximately by the method of double
Legendre polynomials (DPN approximation)

~ N ~y 4 on
G* (v)= 2+ DG OB G (9)
If the Green's functions should be applied in the
x < 0 half-space, the following decompositions are
used . B
G* (k)= X.G" (k,p)+G* (k,1) ~ (10)
I=1

G (k,p) =G (k,p) (11)

where G '"represents the flux of -times scattered parti-
cles mowing in directions ¢ > 0 after each collision,
while G* and G~ are defined by (9).

The adventage of such decompositions of
Green's functions is in the possibility of exact analyti-
cal determination of G'*and G~ functions and the ap-
proximate analytical derivations of G* and G~ com-
ponents by low-order DPN method.

Green's function for x > 0

In Fourier transformed form components G (k, 1)
can be represented by

_ot a'” (k)
2 (1—cm+ikuy )(1—cm+iku)

G'™ (k,u) 12)

where ol
a(k)=——In(1-cm—ik) (13)
2ik

Parts of Green's functions determined approxi-
mately by DPO method have the following form

R0
Gy (k)_iuo ) (14)
where
L-1
A* (k) =[2—c(2em+ 0)—ik]Y. @ (k)+
=0
+(2-2cm—ik) a* (k) (15)

A_(k):c/éLZ_:lal(k)+(2—2cm+ik)aL(k) (16)
=0

TI(k) :{k—i (l—cm)}(k + iJ(k—iJ (17)
Mo Vo Vo

1
Vo =%[l—cm—c(m+€)(1+m€)]_5 (18)

When inverse Fourier transformation is per-
formed for x > 0 by contour integration in complex
plane, the following Green's functions necessary for
solving the transport problem of half-space are ob-
tained

G(X,H, Ho ) =

:C£v0ﬂ0A+[i(l_Cm)//’lO]e—(l—cm)x/yg B

2
clvg At (il vy) e 50 >0
2[pto —(1—cm)v ] e (19)

G(x,/l,[lo ) =

L-1
—f S a'[i(1—cm)/py] e 7k

" 2(1—em)(u—pg ) i

L CVopy AT L(A=em) o] q-cmatu,
1g ~[(1=cm)v, 1?

2 4=/
A
_ czv0 (l /VO) e’X/VO TS 0’ U< 0

2{py —(1=cm)vy ]
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(20) Numerical results for a plane
directional source
cviAt (il v _ mono
G(xuualuo):_ 0 (l 0) € X/voa,u() <0a,u>0
2[pg —(1=cm)v, ] In tab. 1 integral values of Green's functions are
shown forx>0,c=0,5, 1o= 1, and isotropic scattering
(21) law (¢ =1,m =0). They are obtained by the developed
5 method of approximate Green's function and com-
clvg A~ (ilv . ioi
G, 1, 1y ) = — 0 (i/vy) Mo iy <0, <0 pared tq the four dlg'lt exact yalue.:s [9]. Method ofthe
2{pg —(1=cm)v, ] approximate Green's function is applied incase of
(22) L — « with the double Legendre approximations ob-

Green's function for x <0

Function G can be written as

-1
G =S 0
2 (l—cm+ k/lo )(l—cm+ k/l) (23)
where ot
b(k)=—In(1-cm+ik) (24)
2ik
and the terms determined by DP0O method are
+
G5 (k=<2 20 25)
g T1(k)

where I
B* (k)=cl' S b' (k)+(2—2cm—ik)b" (k) (26)
1=0

B~ (k)=
—[2—c(2em+ 0)+ k]S b (k)+[2—2cm-+ ik]b* (k)
=0

(27)

For solving the reflection phenomena, we need

Green's functions for x < 0, which are determined by
inverse Fourier transformation

ctvi BY(-ilv "
G, p1y )= 20 B CHV0) oty
2 py+(1-cm)v,

Mo >0,u>0

(28)
and
2 - .
B —
G(x’,uMuO):cgvo ( l/VO) eX/VO > Ho >07/J<O
2 o+ (1-cm)v,
(29)

tained by DP0O and DP1 methods. It is evident that in
the vicinity of the source the approximate Green's
function method gives very precise values. For x =0,
in combination with the DP0O method, deviation from
the exact value is about 0.5 %, while in combination
with the DP1 method the accuracy is to the unit of the
fourth digit (0.017 %). In the latter case (with DP1
method), the accuracy is very satisfactory even at great
distances from the source.

ALBEDO FOR A HALF-INFINITE SPACE
Determination of the reflection coefficient

We supose that the medium fills up the half-space
x>0, that the incoming flux is ¢* () =6 (u — 1), the out-
going flux is¢~ (1), and that there are no active sources in
the medium. Application of the Placzek lemma leads to
the integral equation [1]

1
6 () =] () GO, . Jp'dua'+
0

0
+[¢™ (W) GO, pHwde', 1<0 (30

-1
where Green's functions are obtained from expres-
sions (20) and (22) for x =0. Owing to the simple ana-
lytical forms of approximate Green's functions, eq.
(30) represents the Fredholm integral equation of the
second kind that can be easily solved. By defining the
reflection coefficient in usual way as the ratio between
the outgoing and the incoming currents

0
[0~ (' du
R=-7! 31)

1
[¢" (uw' du'
0

Table 1. Comparison of exact and approximate Green's function for isotropicaly scattered particles and a plane parallel

monodirectional source (¢ = 0,5, 1 =1)

x* G +Gppo Y6+ Gppy Exact [9]
0 0.2980 0.2995 0.29955
0.25 0.3643 0.3890 0.3870
0.50 0.3766 0.3872 0.3813
1.0 0.3250 0.3113 0.3105
3.0 0.7597-10"" 0.7584-107" 0.7590-10™"
5.0 0.1217-107" 0.1450-107" 0.1437-107"
10.0 0.9064-10° 0.1617-107° 0.1673-107°

. . .
x is measured in mean free path
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we obtain reflection coefficient R for isotropic scatter-
ing medium

R(uo )=%[A(ﬂ0avo Y+ Big ) Iy (g )]+
1 Cve)
21-C(vo)l;(vg)

{A(.Uo Vo) 1) =B(uy )II(VO)_II(#O)} (32)
0 ~Ho
where new functions are defined as
I, (x)=l—xln(l+1) (33)
x
czy2 { X 1 }
A(x,y)= - 34
() X=y [+ (x) 21(y) eh
B(x)=—" 35
() 2, () (35)
2.2
Clx)=-7F 36
() 2, () (36)
I (x)zl—cxln(l+lj (37)
2 X

Numerical results for various
values of ¢ and

In tab. 2 the reflection coefficients obtained by
the DPO and DP1 methods [10] and our results for
L — o, are compared to the four digits exact values
[10]. It is obvious that the approximate Green's func-
tion method is superior to DPO approximation. This is
true for DP1 approximation only for high absorption
media (¢ £0,3). For high scattering media (¢ = 0,9) ap-
proximate Green's function method gives less acurate

values of reflection coefficient but the relative error is
always less than 1 %.

CONCLUSION

Here developed method enables analytical treat-
ment of the transport processes in plane geometry. The
results obtained for angular integral of Green's func-
tion in infinite medium and reflection coefficients of
half-space show the efficiency of the approximate
Green's function method in different domains of
parametres c and u,. It is shown that the less precise re-
sults obtained for angular integral of Green's function
for greater distances from the source could be im-
proved by applying higher order of DPN approxima-
tion (e. g., DP1 instead of DPO).
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METOJA ANMPOKCUMATUBHE I'PUHOBE ®YHKIIMJE 3A PEIIABAILE
PE®JEKCUJE YECTULIA Y PABHOJ TEOMETPUIN

MeTofa anpOKCUMATUBHOT aHAIUTUIKOT pelIeHha TPAHCIOPTHE je[HAUMHE YECTHIA Y PABHO]
reoMeTpUju pa3BUjeHa je pelaBambeM PpexoIMOBUX HHTEIPAIHUX JeIHAYKHA. Je3rpa OBUX je[lHauYnHa Cy
I'punoBe ¢yHKIMje OGecKOHaYHE CpefiuHE anpOKCUMATHBHO ofipeheHe. AHaJIWUTHYKA anpoKcHUMaIyja
I'puHOBUX (pyHKIMja 3aCHMBA Ce Ha pasjaramy (PyHKIHja Ha WIAHOBE KOjH Cy €r3aKTHO aHaJIUTUYKH
pelIeHN U OHE KOjHU Cy alpoKCHMaTUBHO ofpehenn yoouuajenom JJITH anpoxkcumanujoM HUCKOT pefa.
Pa3maTrpan je TpaHCmOpT uUecTHIia y MOJYNpPOCTOpPY M ofpebeH je koedummjeHT pediiekchje y BUAY
aHanuTuuke yHkiyje. [Topebewme ca ersakTHUM HyMEPUUYKUM pElIeHEeM U APYTUM allpOKCHMaTHBHUM

Kwyune peuu: iipanciiopitina jeonaquna, I punosa ¢pyuxyuja, {I1H aiipokcumayuja, koeguyujenii

peghaekcuje



