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Stochastic differential equations are proposed on the basis of generalized Fokker-Planck-
-Kolmogorov equation. From the statements of boundary and initial value problems for
probabilistic density, dispersion and differential entropy the conditions for stability of solu-
tions and changes in scenarios of development of random phenomena of heat and nuclear par-

ticle transfer are obtained.
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INTRODUCTION

Stochastic differential equations are used to
model many situations including population dynam-
ics, protein kinetics, turbulence, finance, and engi-
neering. Knowing the solution of the stochastic differ-
ential equations in question leads to interesting
analysis of the trajectories. Most stochastic differen-
tial equations are unsolvable analytically and other
methods must be used to analyze properties of the sto-
chastic process [1]. From the stochastic differential
equation, a partial differential equation can be derived
to give information on the probability transition func-
tion of the stochastic process. Knowing the transition
function gives information on the equilibrium distri-
bution (if one exists), and convergence to the equilib-
rium distribution. By Newton's second law, the move-
ment of a Brownian particle can be described by the
differential equation, called the Langev in equation,
given by md“x/d¢* = F(x,t), where the force F(x, 7),
is the sum of a deterministic and random forces. Thus,
the position of the particle at a time ¢, x (¢), is a stochas-
tic process and our goal is to understand the transition
probabilities in this model.

In this work the problems of stochastic description
of deterministic mathematical models of heat transfer are
discussed. Especially important is the application of sto-
chastic differential equations in solving transport of nu-
clear particles (charged and uncharged) through the ma-
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terial. This problem is actualized in recent times coupled
with the increasing trend towards miniaturization of
electronic components, which increases their reliability
in the field of particle radiation [2-4].

The fundamental position is as follows: a solu-
tion of a deterministic problem is the expected value of
its stochastic analogue. The relevance of the problem
is in the fact that deterministic problem neither reveals
the stability of stochastic phenomena nor the change of
scenarios of its time development. We propose the
method of investigation of solutions stability of differ-
ential equations for the expected values of temperature
based on the analysis of dispersion. Also, the change
of scenarios of development of random phenomena is
discussed supported by the investigation of differen-
tial entropy.

ANALYTICAL METHOD AND RESULTS

Classical Fokker-Planck-Kolmogorov equation
[5-7], is written without the term which is responsible
for spasmodic behavior of random phenomena which
has the following form

2
OP(1,2) _ AA(QP(.Q)], \op O°P(1.Q)
ot GYe) 00?

Here, P(t, Q2) is probability density function (in
what follows: PB), A(t,€2) is drift coefficient, and B is
Markov diffusion coefficient where ¢ is a time co-ordi-
nate and (2 is a characteristic of random field.

(1



1. A. Soloviev, et al.: Stochastic Models of Heat and Nuclear Particle Transfer ...
336 Nuclear Technology & Radiation Protection: Year 2016, Vol. 31, No. 4, pp. 335-338

The basis for obtaining stochastic analogues of
problems corresponding to deterministic problems of
heat transfer is the equation, proposed in [8], which
generalizes Fokker-Planck-Kolmogorov equation for
the function of probability density P (z, x, (2), where x
is a space co-ordinate,written without a term responsi-
ble for spasmodicity. It has the following form for de-
scription of phenomena of heat conductivity

OP(1.x.Q) &% P(1,x,Q)

ot ox?
2
_OLAWx DP(E,x, Q)] 5 0 P(1,x,02) @
o0 00?

Here, a is the coefficient of the temperature con-
ductivity.

The expected value of the temperature and the
second moment are

o0
MO(t,x)= [ QP(1,x,Q)d,

. 3)
MO(t,x)= [ Q*P(t,x,02)dQ2

and dispersion is denoted by
o’ (1)) =M. 0)-[MOe0) @)

Differential entropy is introduced in the follow-
ing way

oo
S(t,x)z—fP(t,x,Q)ln P(t,x,02)dQ 5)
Letus describe the basic facts of the phenomeno-
logical modeling of random phenomena. The follow-
ing discussion differs from the method of “local ex-
pected values” [8, 9], but it also leads to the given
equation.
We consider the classical equation of heat con-
ductivity as an equation for the expected values

—oo —o0

G{TQP(t,x,Q)dQ} o {TQP(t,x,Q)dQ}
0

—a =
ot ox? (©6)

If we re-write this equation in the following form

oo 2
m[apu,x,g)_a P (t,x,02)

= " }dQ=O )
X

—o0

we obtain

OP(1.x.Q) o P(t,x,Q)

Y " 0 ®)

In this equation there are no terms responsible for
exterior random influence. Since the principle of corre-
spondence has to hold, the equation for PB with the
fixed space co-ordinate and zero value of coefficient of
temperature conductivity has to reduce to the classical

Fokker-Planck-Kolmogorov equation, which on the
right hand side contains the component with the drift
coefficient and the component with the Markov diffu-
sion coefficient. Consequently, in order to respect the
principle of correspondence, the equation for PB has to
be written in the following form

OP(1.x.Q) *P(t,x,02)

ot ox?
2
=_6[/1(t,x,Q)P(t,x,Q)]+0_SB 0°P(t,x,02) )
o0 0.0?

Let us prove, that under the uniqueness condi-

tions
P(0,x,Q2)=P,; (x,Q), x€[0,]]

P(1,0,02)=P,(t,2), P(t,[,2)=P (¢,0),
t €[0,4), Q € (—o,+x) (10)

for which the following equations are satisfied
+o0
[ Py (x,2)d2 =1, x€[0,1]

+oo +oo
[Py(t,2)d2=1, [P, (1,2)d2=1, t €[0+]

Pyt (5, 2) = Py (1,2 ) = P, (1, ) =0, (11)
x €[0,1], t €[0,4)

the condition of normalization of PB (to the unit)
holds. We obtain

aﬁwp(t,x,g)dg} GZ{TP(t,x,Q)d.Q}

—co

—a
ot ox?
4o 2
:I OAx QP(x,Q) o op IP0D) |
00 00?

—oo)

(12)

Since PB and its derivatives are zero at infinity,

we obtain that the right hand side of the last equation is
Zero

GDOOP(t,x,Q)dQ} o* DOOP(t,x,Q)dQ}

—o0 —o0

—a =013
Y = 0(13)

and get a problem for a parabolic equation with unitary
uniqueness conditions. From the uniqueness of the solu-
tion for such a problem, we conclude that
[*2P(t,x,£2)dQ = 1for all possible space and time co-or-
dinates and so the normalization condition is satisfied.

Let us also note that all functions in the unique-
ness conditions for PB are nonnegative. Owing to the
principle of maximum for a parabolic equation we
conclude that for all possible values of space and time
coordinates the PB is nonnegative.

If we derive the time dependence of entropy on
dispersion in the case of normal distribution,we calcu-
late
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400
S(t,x)=—[P(t,x,Q)In P(t,x,Q)dQ2 =

—o0

=—J { [Q-MP (t,x)]z}
2

252 (1)

1 [Q-MP (t,x)]
1 - dQ =
n{ o(t\W2n eXp{ 202 (1)

= 11’1\/%0'(1)4‘ 10
202

1
=o(t)In 2TE+5 (14)

TEMPERATURE IN A ROD

Let us consider the problem for the description
of stochastic behavior of temperature in a rod at the
moment of time 0 < ¢<¢,. We have [7]

am® oMY
=a , 0<t<t, O<x</

ot ox?
MP(t0)=M) =0, 0<t<t (15)
MOV (=M =0, 0<t<t

MO O0x)=M) =0, 0<x<I

Stochastic mode of the behavior of rode temper-
ature at moments of time 0 < 7 < ¢, is described by the
normal distribution law [7]

_aM 2
P(t,x,Q)= L2 =My (4 2)] }(16)

207 (1)

1
exps —
o, (tW2n {

Here, o(f) = const # 0 and the entropy S(¢) =
=0,09) In(2rt)"? +1/ 2. Temperature on the boundary
and within a rod up to the moment #, is constant and it

is equal to the initial temperature M (Tl) (t)y=M % =

=const 20, 0<¢<t;,0<x </

Starting from the moment of time ¢,, the disper-
sion experiences a jump and it is equal to
0'5 =const >0'12. Statement of the problem for ex-
pected values of temperature at moments of time
t; <t < t, has the following form [7]

P P MY

T —a Lt <t<t,, O<x<lI
o ox?
1 1
MOV (1,00=M0) #0, 1, <t<t, (17)
O] .y Va0
M (&, D)=My; #0, 1 <t<t,
MPOx)=M% #0, 0<x<I/

Also, we suppose that stochastic mode of tem-
perature behavior at the boundaries and inside the re-
gion at moments of time ¢, < #< ¢, is described by nor-
mal distribution

()
Pl 2) - [Q-MD (1,%)] }

2Uz(t)

1
exps —
o, (tW2n {

o, (t)=const.

(18)

Differential entropy, as well as dispersion at the
moment #,, experiences a jump, which foretells soon
change of the behavior of temperature of the rod. In the
meantime, at moments of time ¢, < ¢ <, temperature on
the boundary and inside the rod is constant and equal to
M(Tl) (t):M(T% =const #0, t; <t <t,, 0<x</, ie,
it is the same as it was till 7.

Suppose that, starting from the moment #; > t,,
the dispersion experiences a new jump and increases
with time, for example, by the linear law
o3 (t)=03, +a(t—t,). Here 63, =const >3, and
let the stochastic mode of temperature behavior at the
boundary of the rod x = [ at the moment #; >, is also
given by the normal distribution

M
-M§ (D) }(19)

203 (1)

1
P(t,1,Q)=
L D=—— mexp{

We consider the case when, starting from this
moment of time #;, the statement of the problem for ex-
pected values is changed, for example, as follows

oM o*m O

I —q L ty<t<+w, 0<x<l
ot ox?
1 1
MP(1,00=M0") £0, t;<t<+o  (20)
MO (t,1)=0, ty<t+ew
MO (t3,x)=M0) #0, 0<x<I

Here, the boundary condition forx =/has changed.
Differential entropy S(¢)=0;(t) 111(27'5)”2 +1/2 at
moment £; experiences a new jump, representing a major
behavior of temperature field. Temperature has stopped
being constant and started to change by the law

MY (t,x)=

o0
=M [1—(Dx+
P

}sign(x—an) (21)

2nl
2a./t—t,
where @ is the error function.

CONCLUSION

This analysis shows that under the given unique-
ness conditions the normalization of probability den-
sity holds and it is not possible to predict change of
scenarios of behavior of random phenomena only by
following the expected values. This change follows in
the result of the analysis of the emergence of jumps of
dispersion and differential entropy at the boundary of
the region.
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Hrop A. COJIOBJEB, Mnana h. IOJJMWHhAHUH-HEKWh

CTOXACTNYKM MOJEJIN NMPEHOCA TOIUIOTE U HYKIIEAPHUX YECTHULA
BABUPAHUX HA TEHEPAJIM30BAHOJ JEJHAYMNHUAN
OOKEP-IITAHK-KO/JIMOTOPOBA

Croxactuuke fuepeHnyjantae jefHauYnHe IpefyIoKeHe ¢y Ha 0a31 reHepalln30BaHe jelHaulHe
doxkep-ITnank-Koamoroposa. M3 rpaHMuHUX ¥ TMOYETHUX YyClIoBa mpobiema T'yCcTMHE BepoBaTHOhe,
mucriep3uje n audepeHIjaTHe eHTPOoNrje NOOUjeHn Cy YCIOBU CTAaOWIIHOCTH pelieha W TPOMEHe
ClieHapHjy pa3Boja caydyajHuX IojaBa MpeHoca TOIIOTHUX U HYKJIeapHUX YeCTHLA.

Kwyune peuu: citioxacitiuuka ougepeHyujanta jeOHavuna, ouciiepauja, cillabuaHocitl peuiersa



