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This paper discusses the process of functional aging of Geiger-Muller counters. Two types of
Geiger-Muller counter chambers were characterized in an experiment using a combined con-
stant voltage. Chamber A had a coaxial geometry and chamber B had a plan-parallel geome-
try. The experimental results indicate that the aging process was faster in the case of chambers
with a coaxial geometry. The results are explained based on the process of electrical discharges

in gasses.
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INTRODUCTION

The Geiger-Muller counter is a gaseous detector
of ionizing radiation whose principle of operation is
based on gas multiplication. In the process of gas mul-
tiplication 10°-10'° ion pairs are formed from a single
quantum of radiation. Because of that, the amplitude
of the output signal is very high (~1 V). An amplitude
of this magnitude enables the use of simple measuring
instrumentation, which usually does not include a
preamplifier. However, the large concentration of ion
pairs leads to energy-specific plasma-chemical con-
versions. The released energy determines the amount
of the remaining charge in the gas after the discharge
and the total permanent changes of the insulation
structure of GM counters during usage. The remaining
charge affects the next result outcome, the recovery
time of the insulation and the dead time of the counter.
Total permanent changes of insulating structures of
GM counters affect its lifetime [1-4]. There are many
papers in which the dead time of GM counters is exam-
ined, but not so many on the topic of GM counter life-
time [5-9]. The purpose of this paper is to determine
the characteristics of lifetime of commercial GM
counters.

The determination of lifetime characteristics of
GM counters was done by examining the interdepen-
dence of the distribution function of the breakdown
time 4, and the breakdown voltage uy, of the GM
counter chamber. For that purpose, a comparison of
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the results obtained using a constant voltage and the
theoretical expectations were carried out. The selec-
tion of the test technique was determined by the goal of
the experiment. Constant voltage testing gives reliable
and detailed data about the distribution function of the
breakdown voltage, but the determination of the life-
time characteristics requires a lot of time.

DISTRIBUTION FUNCTION OF THE
BREAKDOWN TIME AND THE
BREAKDOWN VOLTAGE

Studies have shown that random statistic sam-
ples of variables such as the breakdown times and the
breakdown voltages, in coaxial geometries insulated
with noble gasses at low pressure, belong to the
Weibull distribution. Based on the selected quantiles
of those distributions, a so-called lifetime characteris-
tic can be constructed. Experience has shown that the
lifetime characteristic forms a straight line on a double
logarithmic scale [10-12]. If the confidence intervals
of the used quantiles are known, they can be trans-
ferred to the lifetime characteristic. For each quantile
order p (in egs. 2 and 3, p = 0.1 and p = 0.63) of the
breakdown time, the lifetime characteristic is de-
scribed in the following way
1/r (1)
where kg, is a constant which characterizes the geome-
try structure, and r is the lifetime exponent which de-
pends on the insulation material and its condition.
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Changes (like curving) in the lifetime characteristic in-
dicate to changes in the aging mechanism (electrical
aging mechanism) [13, 14].

Based on the validity of the Weibull distribution
for random statistical samples of variables of the
breakdown time and the breakdown voltage, the prob-
ability for the breakdown voltage and the fixed break-
down time must be equal to the probability for the
fixed breakdown voltage and the breakdown time,
F(ug,t4 )=F(tq,uq ). Starting from the Weibull
distribution

5/
F(x,y,)=1-exp —("j )
xe3(01)

and the assumption that the lifetime exponent  can be
applied to all the quantiles, it can be derived

Uag (ta )t =kag, 3)
which is also valid for the dependence on the r values

(ud63 > 1 d1) .

On the basis of the expression (3), there is a rela-
tionship between Weibull's exponents for statistical
samples of random variables of breakdown time (5,),
breakdown voltage (6,) and the lifetime exponent »

r=—"4% 4)

It should be repeated that expression (4) applies
only if the random variables of the breakdown time
and breakdown voltage belong to the Weibull distribu-
tion and that the lifetime exponent is equally true for
all distributions.

EXPERIMENT

The experiments were carried out under con-
stant voltage with two types of commercial GM cham-
bers. Type A has a coaxial electrode configuration, fig.
1(a), and type B has a plan parallel electrode configu-
ration, fig. 1(b). In the experiment, the GM chamber
was at an operating voltage (400 V DC voltage for
both type A and type B chamber), and the electrical
discharges were simulated by superimposed impulse
voltage. Namely, if the pulse voltage caused a break-
down, it was equivalent to the GM counter operating
mode, and if the impulse voltage did not cause a break-
down, it was equivalent to an electric discharge in the
GM chamber that was not self-sustaining. On fig. 2 the
scheme of the measuring system is shown.

The amplitude of the impulse voltage ranged
from a minimal value of 10 V (at which a breakdown
almost never occurs) to a maximal value of 250 V (at
which a breakdown almost always occurs). The num-
ber of voltage steps was 10 and the number of applied
voltages per step was 100. The difference in the ampli-

Figure 1. GM counter with coaxial electrodes (chamber
A) (a), and GM counter with plan-parallel electrodes
(chamber B) (b)
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Figure 2. The measuring system scheme; / — adjustment,
2—triggering level, 3 —actuator, 4— DC voltage generator,

5 — test transformer, 6 — impulse generator,

7 — Graetz circuit, 8 — divider, 9 — divider, 10 — measuring
unit, 11— capacitor and measuring impedance, 12 —adapter,
13 — test sample, 14 — breakdown indicator, and

15 — measuring and control unit

tude of the impulse voltage per step was 25 V. The in-
terval between two impulse voltages was 1 minute.
The measuring system was designed so that it
automatically determined a statistical sample of 1000
random variables of the breakdown time and the
breakdown voltage. The obtained statistical samples
were graphically tested and using the testto see ifthey
belong to the Weibull distribution. After that, the pa-
rameters of the adequate distributions were derived
using the momentum method and the lifetime charac-
teristics were plotted. The combined measurement un-
certainty of the procedure was less than 3 %[15, 16].

RESULTS AND DISCUSSION

The lifetime characteristics of type B and type A
GM chambers are represented in fig. 3 and fig. 4, re-
spectively.
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In fig. 3 the lifetime characteristic of the type B
GM chamber is a straight line which means that there
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Figure 3. Lifetime characteristic of chamber B
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Figure 4. Lifetime characteristic of chamber A

were no irreversible changes in the breakdown mecha-
nism during the experiment. Figure 4 shows that the
lifetime characteristic of the type A GM counter is
curved which means that there were irreversible
changes in the aging mechanism of the insulation
chamber.

The obtained results can be explained by
changes on the electrodes and in the gas due to
long-term electrical discharges. Changes occur on the
electrodes due to partial discharges and breakdowns.
Electrodes with small curvature radiuses are particu-
larly prone to erosion. Also, electrodes with small ar-
eas are prone to roughness increasing and formation of
non-metallic coating. However, a similar phenomenon
can be seen on electrodes with larger areas. Firstly, re-
garding the changes in the gas, one must keep in mind
that electric discharges lead to chemical reactions and
thus to changes in the gas composition. Secondly, the
electric discharge leaves behind spatial charges which
recombine relatively slowly. If the following voltage
application occurs after the discharge, before the spa-
tial charges recombine, there will be a different distri-
bution of the critical electric field, which will either
speed up or slow down breakdown process, in com-
parison with the case without spatial charge. If there
are solid dielectric boundary layers in the insulation
system (due to support elements for example) firmly
adhering, surface charge may be formed which affects
the distribution of the critical field.

These mechanisms are responsible for the differ-
ences in the lifetime characteristics of GM counting
chambers type A and type B. Namely, the type A count-
ing chamber has a coaxial geometry with a small radius
central electrode. In the case of the type A counting
chamber, the process of charge deposition on the insula-
tion carriers significantly affects the changes of the crit-
ical field with time. Unlike the type A counting cham-
ber, type B has electrodes with an infinite radius of
curvature and electrode supports with negligible di-
mensions. Regarding the processes in the gas, they are
the same for both observed chambers and they do not
lead to irreversible changes in the aging mechanism.
This is due to the fact that the insulation gas in both of
the used chamber is a dominantly noble gas (He).

CONCLUSION

Based on the consideration of the lifetime char-
acteristics of GM counters with radial homogenous
fields in the counting chambers, it was found that irre-
versible changes first appear in tubes with radial
fields. This means that in conditions of long-term us-
age, GM counting chambers with electrodes less sus-
ceptible to changes caused by electrical discharge
should be used. Such electrodes have larger curvature
radiuses and are made of materials with a lower work
function, higher melting temperature and a better ther-
mal conductivity.
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KAPAKTEPUCTHUKE BEKA TPAJABA TAJTEP-MUWIEPOBOI BPOJAYA

Y papy ce pa3maTpajy mporecu (pyHKHOHAIHOT cTaperma KoMope ['ajrep-MmuiepoBor Gpojada.
Ha ocHoOBY ekcnieprMeHaTa ca KOMOMHOBAHHM CTATHUM HAIIOHOM ofipeheHe cy KapaKTepHCTUKE Ba THIA
koMmopa. Komopa tunma A 6umna je ca KoakcujaaHoM, a Tumna b ca mmaH-mapaseIHOM IeOMETpUjoM.
JlobujeHn pe3ynTaTu 00jallllkbeH Cy Ha OCHOBY IpoIieca eJeKTPUYHOT MPaKihemha y racoBUMa.

Kmwyune peuu: Iajzep-Muaepos 6pojau, eaeKitiputHo upaxckerbe y 2c08UMa, KapaKiepuciliuka 6exa

mpajarba



