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In this paper, the application of three-component gas mixtures as a working gas in Gei-
ger-Mueller tubes was considered. In addition to the noble and quenching gas, an
electronegative gas is used, at the same time, as the third component of gas mixture. This pa-
per is mostly experimental. The experiments are carried out on the enlarged Geiger-Mueller
counter tube model. By applying the similarity law for electric discharges in gases on the
model and commercial Geiger-Mueller counting tubes, the model was verified. The obtained
results showed that a small percentage of SF, gas, in the working gas, stabilize operating point
of Geiger-Mueller counter tubes and reduce dead time.
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INTRODUCTION

The Geiger-Mueller counter (GM counter) is a
gas detector whose work is based on gas multiplica-
tion, as in the case of a proportional counter. In a pro-
portional counter, each primary electron generates an
avalanche that is independent of other avalanches. In
the GM counter, a stronger electric field is used, which
makes avalanches more intense. Above the critical
value of the electric field, each avalanche launches at
least one avalanche, thus creating a self-sustained dis-
charge known as Geiger's discharge. When a certain
fixed number of avalanches are reached during a sin-
gle discharge, the collective effect of all avalanches
completes the chain reaction and discharge ends. All
impulses of the GM counter have the same amplitudes,
regardless of the number of primarily created ionic
pairs that start the discharging [1-4].

Noble gases (helium or argon) are often used to
fill GM tubes. One more component is added to induce
quenching and thus avoid the appearance of false im-
pulses. A gas that is added to noble gases, in order to
enhance quenching, is called a quenching gas. This
gas in the mixture, participates with 5-10% and should
have lower ionization energy and a more complex mo-
lecular structure than the primary gas. Quenching gas
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prevents the appearance of false impulses through a
collision with charge exchange. Positive ions that
emerge during discharge, are ions of the primary gas.
During the drift of positive ions toward the cathode,
they collide with neutral molecules, some of which are
the molecules of the quenching gas. In the collision of
ions with molecules of the quenching gas, there is a
tendency of transmitting a positive charge to a gas
molecule due to less ionization energy. The positive
primary gas ions are neutralized by taking of one elec-
tron, and the positive ion of the quenching gas contin-
ues to drift instead. If the concentration of the quench-
ing gas is large enough, the collision-transmitted
collisions ensure, that all positive ions that finally ar-
rive at the cathode, are ions of the quenching gas. Dur-
ing their neutralization, the excess energy is spent on
the dissociation of complex molecules of this gas, in-
stead of the release of secondary electrons, thus pre-
venting the emergence of additional avalanches. Most
often used quenching gases are ethyl alcohol or a gas
of halogen elements (chlorine, bromine) [5-7].
According to this mechanism of the GM counter,
the presence of electronegative gases in the mixture is
not recommended. Moreover, according to the litera-
ture, it is strictly forbidden. However, it is possible that
electronegative gases in the mixture, by reducing free
electrons, contribute to the removal of false impulses.
The aim of this paper is to examine how a small per-
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centage of the electronegative SF4 gas, as the third
component in the working gas, affects the characteris-
tics of the GM counter.

ELECTRIC DISCHARGE IN GAS
MIXTURES

An electric breakdown in the gas is the result of
self-sustaining avalanche processes and depends on
the mechanisms of creation and loss of electrons (in
the free electron gas). Mathematical modelling of the
electrical breakdown implies knowledge of elemen-
tary processes in a gas, described by ionizing coeffi-
cients: o —number of free electrons generated per unit
of'the path crossed in the direction of the electric field;
1 — the number of electrons affected by the electrone-
gative molecules per unit of path in the direction of the
electric field, y — the number of free electrons gener-
ated for each primary avalanche. The ionization coef-
ficients do not have a constant value but they change
depending on the electric field and the pressure [8, 9].

For calculating the value of the d. c. breakdown
voltage (which represents the value of the lowest pos-
sible breakdown voltage) of the two-electrode gas in-
sulated system, knowledge of the electric field and
ionization coefficients, is needed. The experimental
value of the d. c. of the breakdown voltage is deter-
mined by a d. c. voltage, whose rise time is much
greater than the time characteristic for elementary pro-
cesses in the gas. If secondary processes on electrodes
are dominant, the breakdown takes place with the
Townsend mechanism and its value is determined on
the basis of the conditions

d x
] a(x)ex ja(x)—n(x)dxjdle (1)
0 0

If the secondary processes in the gas are domi-
nant, the breakdown takes place with the streamer
mechanism and its value is determined on the basis of
the conditions

d
[ (a(x)-n(x))dx =185 2
0

The value of the d. c. breakdown voltage is the
deterministic quantity. Unlike the d. c. breakdown
voltage, the impulse breakdown voltage is stochastic
quantity. The impulse breakdown voltage is obtained
when the voltage rise time is of the same order of mag-
nitude as the time characteristic for the elementary
processes in the gas[10, 11]. The dependence of the
d. c. breakdown voltage on the value of the product pd
(pressure x the interelectrode distance) is shown
graphically and is called the Paschen curve [12, 13].
The impulse breakdown voltage is displayed by im-
pulse characteristics, i. e., the dependence of the
breakdown voltage on the time of the impulse effect.
Impulse characteristics are plotted for each quantile

probability of breakdown. As a characteristic of the
gas-insulating isolation system, impulse characteris-
tics of 0.1 % and 99.9 % of quantile probability of the
breakdown are usually given [13-15].

Expressions for ionization coefficients were
used to calculate the value of the d. c. breakdown volt-
age [12, 13]

a(x)=n, [0, (e f(&)de (3)
() =ny o, (&)f(e)de (@)
0
y = const. (&)
EXPERIMENTAL DETAILS

In the experiment the model of a GM counter and
commercial GM counter are used (fig. 1) [14, 15]. The
relationship between the dimensions of the GM model
and the commercial GM counter, including the mean
free path of the electron in the working gas, satisfies the
general similarity law for gas discharges [16]. In the
GM counter model, the gas mixture wasA Ar +4 % CI +
+(0.96 —1) SF. The percentage of SF6 gas in the mix-
ture was 0 %, 1 %, 5 %, 10 %, 20 %, 30 %, 40 %, and
50 %. Working gas in a commercial GM counter was a
two-component gas mixture of 95 % Ar + 5 % CI. The
composition of the gas mixture in the GM counter
model was formed on the basis of the law on the addi-
tion of partial pressures. In this case, a gas circuit that
was used is presented in other paper [14].

During the experiment, d. c. and impulse volt-
ages were used. The d. c. voltage had an increase rate
of 8 Vs!. d. c. voltage ripple was less than 5 %. Used
impulse voltage was the standard atmospheric impulse

Figure 1. Model (up) and commercial (down) GM
counter tube
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of 1.2/50 us. The value of the d. c. breakdown voltage
is measured by the voltage divider and the memory
voltmeter. The impulse breakdown voltage value was
measured by a compensated capacitive divider and a
digital oscilloscope (500 MHz). During the test, the
GM counter and test equipment were galvanically sep-
arated from measuring equipment, which was placed
in the measuring cabin with protection greater than
100 dB. All measurements were fully automated. The
combined measurement uncertainty of the measure-
ment procedure was less than 5% [17,18].

The experimental procedure consisted of the fol-
lowing steps: 1 —determination of 100 d. c. breakdown
voltage values of the commercial GM tube, with a
pause of one minute between two successive break-
downs; 2 — determination of 1000 d. c. values of the
breakdown voltage of the GM counter model without
SF6 gas in the working gas, with a pause of 1 minute
between two successive breakdowns; 3 — determina-
tion of 100 values of impulse breakdown voltage of a
commercial GM tube with a break of 1 minute be-
tween two successive breakdowns; 4 — determining
1000 values of impulse breakdown voltage of the GM
counter model, without SF gas in the working gas,
with a pause of 1 minute between two successive
breakdowns; 5 — determination of 50 values of com-
mercial GM counter dead time by the three-source
method; 6 — determination of 50 dead time values of
model of the GM counter, without SF4 gas in the work-
ing gas, by the three-source method; 7 —measurements
of 50 values of d. c. breakdown voltage values of GM
counter model with 0 %, 1 %, 5 %, 10 %, 20 %, 30 %,
40 %, and 50 % of SF gas in the working gas, at pres-
sures of 1000 Pa, 1500 Pa, 2000 Pa, 2500 Pa, and 3000
Pa; 8 — repeat the measurements from step 1 in the
presence of 0 %, 1 %, 5 %, 10 %, 20 %, 30 %, 40 %,
and 50 % of SF gas in the working gas, and 9 —repeat
the measurements from step 5 in the presence of 0 %,
1%, 5 %, 10 %, 20 %, 30 %, 40 %, and 50 % of SF, gas
in the working gas.

The experimentally obtained results were pro-
cessed in the following manner: 1 — on all statistical
samples of random variables d. c. breakthrough volt-
age, impulse breakdown voltage and dead time,
Chauvenet's criterion for rejecting unreliable measure-
ment results was applied [19]; 2 —the such obtained sta-
tistic samples were tested for belonging to the theoreti-
cal statistical distributions of normal, Weibull and
double-exponential [20]; 3 — for all statistical samples,
the first, second and third central moments (i. e. mean,
standard deviation and slope) ware determined [21]; 4 —
statistical samples obtained by procedures 1 and 2, 3
and 4, 5 and 6 are chronologically merged and divided
into sub-samples with 10 random variables to which
U-test of belonging to the same statistical sample
[22-24] was applied. The mean values of the random
variables of statistical sample obtained in step 7 are de-
termined with the calculated.

RESULTS AND DISCUSSION

Using the x? test and the Kolmogorov test for
statistical samples of d. c. breakdown voltage, random
variables for the GM counter model and the commer-
cial GM counter tube, were found to belong to the dou-
ble-exponential statistical distribution. Also, the same
distribution is found for random variables of impulse
voltage. For stochastic samples of random variable of
dead time, it was found that they belong to Gaussian
distribution. In figs. 2 and 3, the d. c. and impulse
breakdown voltage probability displayed on paper of
double-exponential distribution, for the model of the
GM counter tube and for the commercial GM counter,
were presented. Figure 4 shows the dead time random
variable for the model of GM counter and for the com-
mercial counter tube. Based on the results shown in
figs. 2, 3, and 4, it can be stated that the GM counter
model and the commercial tube are behaving as an
identical two-electrode system isolated by gas. This
conclusion makes it possible for all the results ob-
tained by testing the GM counter model, to be directly
applied to a commercial GM tube. This result is a di-
rect consequence of the properly applied law of simi-
larity [25] and law of increasing probability [26, 27],
when constructing the GM counter model. Namely,
when designing the GM counter model, it was taken
into account that all geometric values between the GM
model of the counter tube and the commercial counter
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percentage share of SFy gas in the working gas, with
the pressure of the gas as a parameter. Figures 7, 8 and
9 show that by adding a small percentage of the SF
gas to the mixture, a considerable shortening of the
dead time occurs. With increased pressure, this effect
is less pronounced. The obtained result can be ex-
plained by the fact that SF¢ gas, with its affinity to the
formation of negative ions, removes free electrons,
formed by thermoionization during the previous dis-
charge. In this way, there is rapid cleaning of the work-
ing gas from the free, potentially initial electrons,
which results in the shortening of the dead time.

CONCLUSION

The obtained results have practical application
and enable the improvement of GM counters. Namely,
ithas been shown that the working gas, as a three-com-
ponent mix of, noble gas, gas and an electronegative
gas of a small percentage share, enables the construc-
tion of GM counter tubes with a more stable operating
point and short dead time. A more stable operating
point is the consequence of a smaller change of the
value of the breakdown voltage in relation to the pres-
sure, i. e., less dependence of the breakdown voltage
of GM counters from the pressure change. This is es-
pecially important because the basic gas of GM coun-
ter tubes is a noble gas which (due to a small atom di-
mension and atomic structure) is difficult to keep in an
enclosed space and with time, changes in pressure oc-
cur. Reduction of the dead time, achieved by adding a
small percentage of SF, gas to the working gas, is the
most preferable improvement of the commercial GM
counting tubes. Further testing and verification of the
results obtained, should be aimed at examining the ef-
fects of adding SF, gas (and other electronegative
gases) to the working gas to which the basic gas is he-
lium (He).
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INPUMEHA EJNEKTPOHEI'ATUBHOI I'ACA KAO TPERE
KOMITOHEHTE Y PAJTJHOM T'ACY TAJTEP-MMIEPOBOI' BPOJAYA

Y papy ce pa3mMaTpa MOryhHOCT MpUMEHEe TPOKOMIIOHEHTHHX FaCHUX CMeEIIa, Kao pagHoOT raca, y
I'ajrep-MunepoBuM GpojaukuM rieBuma. [Ipu ToMe ce, Kao Tpeha KOMIIOHEHTa, HOpey IVIEMEHUTOT raca u
raca 3a rauieme, KOPUCTH U eJIeKTPOHETraTHBHU rac. Paji je mpeTeskHO eKCIepUMEHTATHOT KapakTepa.
EkcnepumenTn ce o0aBibajy Ha BuiecTpyKo yBehanom mopeny Iajrep-MusepoBe Opojauke IEBH.
ITpuMeHOM 3aKOHA CIMYHOCTH 3a €JIEKTPUYHA MpaxKibekha y racoBuma, Ha mojpen lajrep-Musepose
Opojauke neBu 1 KoMmepuujaiany ['ajrep-MusiepoBy 1eB, U3BplleHa je Bepudukanuja Mmoaena. JooujeHn
pe3yaTaTé MoKasalu Cy jla Majii MPOLeHTyalHu yieo SF raca y pajlHOM racy craGuiu3yje pajiHy Tauky

Kmwyune peuu: Iajzep-Muaepos 6pojau, paoHu 2ac, eaeKiipoHezZaiiuear 2ac



