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Seeking optimal material distribution in a nuclear system to maximize a response function of
interest has been a subject of considerable interest in nuclear engineering. Examples are the
optimal fuel distribution in a nuclear reactor core to achieve uniform burnup using minimum
critical mass and the use of composite materials with an optimal mix of constituent elements
in detection systems and radiation shielding. For such studies, variational methods have been
found to be useful but, they have been used for standalone analyses often restricted to ideal-
ized models, while more elaborate design studies have required computationally expensive
Monte Carlo simulations ill-suited to iterative schemes for optimization. Such an inherent
disadvantage of Monte Carlo methods changed with the development of perturbation algo-
rithms but, their efficiency is still dependent on the reference configuration for which a
hit-and-trial approach is often used. In the first illustrative example, this paper explores the
computational speedup for a bare cylindrical reactor core, achievable by using a variational re-
sult to enhance the computational efficiency of Monte Carlo design optimization simulation.
In the second example, the effect of non-uniform material density in a fixed-source problem,
applicable to optimal moderator and radiation shielding, is presented. While applications of
this work are numerous, the objective of this paper is to present preliminary variational re-
sults as inputs to elaborate stochastic optimization by Monte Carlo simulation for large and
realistic systems.
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INTRODUCTION

The objective of distributing materials in a nu-
clear system, multiplying or fixed-source, is to maxi-
mize (or minimize) some quantity of interest such as
minimizing the fissile mass in a nuclear fission reactor,
maximizing the tritium production in a fusion blanket,
or minimizing the radiation environment surrounding
a detection system. Thus, optimal distributions lie at
the heart of design optimization for which variational
methods [1-5] are extensively used although often for
idealized configurations. Further, in design optimiza-
tion, sensitivity coefficients due to uncertainty in nu-
clear cross-section data, material and geometric per-
turbation [6-9] can also be determined with variational
methods. Good computational efficiency has been
achieved for large-scale reactor design computations
and with diverse applications in engineering [10]. For
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the optimal arrangement of fuel in a core, the
Pontryagin Maximum Principle is used [3], to estimate
the optimal control, i. e., best placement of high and
low enriched fuel in the core. This constitutes an
ODE-constrained optimization problem with the dif-
fusion equation as the constraint. The drawback with
variational methods has been their difficulty to be ap-
plied for large problems, for which Monte Carlo meth-
ods [11-13] and heuristic methods such as genetic al-
gorithms have been demonstrated to be more attractive
[14]. However, variational methods have been ex-
tended [7-9, 15] to thermal reactor physics calcula-
tions, with the computationally accelerated 3-D heter-
ogeneous variational node method, amenable to
parallelization. In the Monte Carlo method, sensitivity
coefficients can be estimated by obtaining derivatives
sampled in a single run thus, avoiding the need for per-
forming an adjoint run in addition to a forward run, as
is done in the deterministic approach. However, deriv-
ative sampling has been found to be accurate for small
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perturbations and hence, the choice of a reference
condition has bearings on the computational effi-
ciency of an optimization simulation. This work ex-
plores the computational advantage of using a
variational result as an educated guess for starting a
Monte Carlo derivative sampling simulation. Initial
variational results are obtained from two-group neu-
tron diffusion equations for illustrative examples of a
two-zone reactor core, and a non-multiplying me-
dium. In the formulation of this optimal control prob-
lem with the material density as the control variable,
the Lagrangian is used since the effect of material dis-
tribution on the response of interest has a direct and an
indirect component. The former due to the material
density change and the latter due to the change in the
field function i. e., the neutron flux, due to the change
in density. As an example, the two-group theory is
matched with the detailed MCNP5 [16] simulation re-
sults to strengthen its validity and enable its use to gen-
eralize on the applicability of its results.

This work presents a useful insight into the dif-
ferent approaches and is applicable to design optimi-
zation in nuclear systems.

VARIATIONAL FORMULATION

In design optimization, one of the goals is to
maximize some reaction rate, or performance index,
Ry =<2 ¢ >subject to a constraint such as the neu-
tron diffusion (or transport) equation

M¢=0 (la)

In a two-group formulation [17]

. L )
M =[ Ry ’2} (1b)
sz,l—)Z L,

Here we have assumed that fission neutrons are
produced in the thermal group (group 2) and appear in
the fast group (group 1). The atomic density of the ma-
terials, for a non-uniform distribution, can be written
as N(x) = fix)N,, subject to If f(x)dx=1in some do-
main " € (a, b)with appropriate boundary conditions.
In eq. 1(a), the flux vectoris ¢ =[¢, ,¢, 1" and the op-
eratoris L, =VD, V¢, =2, ¢, (g =1,2).

The variational formulations considered here
have a continuous control u, and a discrete control u
having an admissible set of values corresponding to
the minimum and maximum values u,,;, and u,,,, re-
spectively.

In the continuous formulation, the Lagrangian is
written as

max?

L=R.+<¢*", M¢> )

with an objective to obtain the optimal distribution u*
by seeking first-order variations for a stationarity con-
dition.

In the discrete formulation, where the control is
given a value, the equations become easier to solve.
Then eq. 1(a) is written in state-space form for vari-
ables y; expressed as

yi:f;(l}’uax)ai:0>1)2,3a4 (3)

with the performance index included.
The Hamiltonian is then written as

4
H= 2 f;(y,u,x) 4)
i=0

which yields the stationarity conditions

- o
yi = fi(yu,x)= o (5a)

1

and the adjoint equations

_oH
0y;

With solutions obtained for y; and 4, using the

transversality boundary conditions, the Hamiltonian
can be found in the form

H =g (u,x)+h(x) (6)

dy =

(5b)

and thus the shape of g(u, x), also refered to as the
switching function, determines which of the admissi-
ble values of the control u are to be applied to maxi-
mize H. Then, according to Pontryagin's Maximum
Principle

H(y' " x)=H(y ,u,x) (7)

where i, < U < Upax.

We now consider two illustrative examples
where the previous formulations are used to obtain op-
timal distributions.

EXAMPLE 1: OPTIMAL FUEL
ENRICHMENT

In a nuclear reactor core, fuel of varying enrich-
ment is used and placed in such a way that uniform
burnup is achieved and minimum fuel is required for crit-
icality. The optimization problem is thus formulated as
follows: Given some maximum fuel enrichment u,,,,,
what is the best placement of fuel such that the reac-
tor is critical with minimum fuel mass? This is formu-
lated as follows: minimize R = < u > where
u=y ,=p'+68,y 26535]\/235,1,{, =N°/NY (enrich-
ment),§ = Nohers g others with the constraint of fixed NV
— total number of uranium atoms in the domain » € (0,
R) subject to the constraint of eq. 1(a) with appropriate
boundary conditions [3]. For a bare cylindrical reactor,
the coupled second-order ODE representing the govern-
ing equation M ¢ =0 are written in state space form
with the variables y, = ¢, y,=rdé,/dr, y;=¢,, andy,
= r d¢,/dr. The first-order equations are then
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V)= Y.T1 Yy =1V —TiQurys .1y = yy,and
T, V4 = -1V, + T, fury;with y, =2nur added as a state
equation. Here, 7, =D, />, 1, = p2, /D>,

a:kw/le,ﬂzl/Dz
These equations are solved using the transvers-
ality boundary conditions

4 (R)3y; (R)=2;(0)6y;(0)=0 ®)

Sy (h ) Sy Jy (Hahi ) 1S Y (1)
=ty Jy (1) Jy (1) WY (1)
Sido(n) =SyJo(tari)  =SuYo(wn)

Jo(yn) ~Jo(ua1i) Yo (7))
0 S1Jo (1 R) S»nYy(1aR)
0 Jo (1 R) Yo(1R)

for which the flux boundary conditions
1., :¢z‘r= =0 and ¢[,_p =¢5[,_p =0 yield
boundary conditions for the adjoint fluxes:
Al ‘r:O 213‘r:0 :Oand j'Z‘F:R 214‘;’:R :0'

The Hamiltonian is now written in the form of
eq. (6) with

g(u,r)=u2nily —ard, y3 + Prigy;)  (92)
and

h(r)Zlﬂq B%) +*1”ﬂ-z)’1 +*1}“3 Y4 _LMUH (9b)
r 7, r 7,
and thus the shape of g(u), also refered to as the switch-
ing function, determines which of the admissible val-
ues of the control u are to be applied according to
Pontryagin's Maximum Principle where upy, < u <
< Umax-

The discrete form simplifies the continuous form
by permitting the control « to be a constant in a particu-
lar sub-domain of the problem. Thus where g(u, x) is
minimum (either sign), u,,,, is applied and vice versa.
The number of zeros of the switching function will de-
termine the number of controls applied. At the bound-
aries, g(u, 0)=0, and g(u, R) <0 with zeros in between.
It can be inferred [3] that for the two-zone case, H is
maximized with # = u,,, in the first zone 0 <r <R,
and u = u,,;, in the second zone R, <r < R where the
zone boundary is at 7= R;. While contrary to engineer-
ing practice of lower enrichment in the inner zone, this
example is presented merely to demonstrate an opti-
mal result. Similarly, for three zones, the maximiza-
tion requirement is the control strategy u, i, Umin
for the first, second and third zones, respectively. We
thus need to find the critical pairs for each permissible
value of u <u,,.. This is achieved from the criticality
condition found by solving for the two-group fluxes
using Cramer's rule (det(¥) = 0) for homogenous

equations. For the one- and two-zone cases, the condi-
tions are:
One zone

S Jo(uR) S1314(AR) _

0 (10a)
Jo(uR) I, (AR)

Two zone

MS13Lg(A1 ) —AaS 530 (Aa1) A28 04K (A577)
Aty (A1) a1y (Ay17) 22K o (A21)
Si3Lo(A11) =Syli (A1) —S24K(A,1) -0
Iy(A11) —1y(Ry1) K (A21)
0 Sxlo(A,R) 83K (4,R)
0 Iy(A2R) Ko (4,R)
(10b)

Where Jy, Y, are Bessel functions of order zero of first
and second kind, and I, K, are modified Bessel func-
tions of the first and second kind, respectively. Here,
S;; are the coupling coefficients for zone 7 and index j
with

Si =1y (0 +Bu)=5, =Sy
Sis =—Tz(/12 —Pu)=S8y =8y
12 =%[—(rl + ) +(1y + 1) + 4k, ~D)r, I
21, L
1
2

22 = (7, + 1)+ (2, + 12 ) +4(k. —)r, 2

7
For the three-zone case, Lee [3] has obtained a
10 x 10 determinant.
We consider a bare homogeneous nuclear reac-
tor core (radius 122.6 cm, height 365.8 cm) with the
following two-group data [17]

D;=1.13cm, 2 =0.0419 cm™!
D,=0.16 cm, 62 =678 b
NY =N £ N*® 26994 10! atoms per cm’

Clearly, no optimal arrangement can be deter-
mined from the one-zone case as the bare reactor is
found to be critical for a uniform enrichment of 1.1 %
(critical mass 518.7 kg U?*%). For a two-zone
equal-volume (R = 86.6913 cm, 122.6 cm) configura-
tion, the critical enrichment pairs found from the de-
terminant are given in tab. 1. Asthe fuel enrichment
in the first zone increases from natural uranium
(Umax = 0.71 %) to 1.2 %, the enrichment decreases in
the second zone. With these combinations, the average
u (a measure of the minimum critical mass) is given in
the third row while MCNP results are given in the
fourth row.
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Table 1. Two-zone enrichment pairs for criticality

Umax/ U 0.71 0.9 1.1 1.2

Unin/U> 1.54 1.27 1.1 1.01

Uay 1.13 1.09 1.1 1.13
MCNP 0.96760 | 0.96538 | 1.00422 | 1.03035
(0.00397) | (0.00190) | (0.00192) | (0.00169)

Table 2. Critical pairs, relative critical mass, MCNP runs

Zone 1 DTPMP MCNP
o [%] | RCM_| (500 1 10 500)*
1.14 1.040 | 09797 ((1)188?8421)
113 1042 | 0.9869 ((1):8883(7))
112 1.053 | 0.9869 ((1):88%%
111 1.067 | 0.9914 (16900(;‘1407)
1.10 1.087 1.0 ((1):88‘1‘5?)

*(500 1 10 500) — means 500 neutrons simulated with an
eigenvalue guess of 1 for 500 cycles with 10 skip cycles

There are no solutions for u,,, > 1.2 because at
an enrichment of 1.2 %, the critical radius is less than
the radius of the first zone. The MCNP runs for 1000
neutrons per cycle and 100 cycles give a preliminary
estimate of k¢ = 1.00195 (0.00190) for 1.2 % enrich-
ment with a bare cylindrical reactor of radius 68.05 cm
and height 365.80 cm. The feasible solution for an op-
timal is thus the range 1.1-1.2 % enrichment in the first
zone.

Two-group criticality pairs found from eq. 10(b)
are given in tab. 2 along with the relative critical
masses and corresponding MCNP simulations for 500
neutrons per cycle for 500 cycles and 10 skip cycles.

Assuming that the maximum available enrich-
ment is 1.14 %, the minimum relative critical mass
found is 0.9797 (508.18 kg U?*).

The masses in both zones are related as follows

M 2235 _ wh M l235
usly
so that the relative critical mass (RCM) is defined as
M+ M3 uy +u? M

RCM =
M§35 ", M§35

where M 335 =mass of U** in zone 1, u;= enrichment in
zone 1, V;=volume of zone 1, M 535 mass of U in zones
1 and 2 for 1.1 % uniform distribution (518.7 kg).

The problem with increased enrichment in the
central core is the enhanced fuel peaking which is not
desirable and hence, less enriched fuel is placed in the
central core. The present result is correct within the
limitations of the two-zone model considered. Here,
the total mass increases as lower enriched fuel is
placed in the central core, as shown in fig. 1.

Figure 2 shows the thermal fluxes obtained from
MCNP for three cases viz 1.1 % uniform enrichment, and

1.4 T T T T T T T 1.1

M7 [%)

-

L i : L i 0.9
111 112 113 114 115
Upax [%]

Figure 1. Minimum critical mass for a two-zone reactor
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Figure 2. Thermal flux shape in reactor

small perturbations: 1.07 %-1.3 % and 1.13 %-1.04 %
enrichments showing clearly the flattening of the thermal
flux with a lower inner zone enrichment.

The criticality pairs can be computed from
MCNP simulations by carrying out runs for each case
which is clearly computationally expensive. This can
be avoided by using the perturbation capability of
MCNPS5 [11] for sampling first- and second-order de-
rivatives in a two-term Taylor series which can be used
to estimate kg for perturbations in the enrichment in
terms of a reference kg (14,)

Feogr (1) = Keegr (110 )+ e
du
o 1 ke
2! du 2
This formulation is suitable for optimization anal-
yses which require the ability to estimate the effect of

small changes such as in material density or geometry.
Thus, the first derivatives is computed as

u OU+

G

_dky

€
du

_ ke () —kegr () =(5kj
‘0 ou ou

and the second derivative as
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Figure (3a). Perturbation estimates for kg
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Figure (3b). Criticality pairs predicted by perturbation

c :dzkeff _zkeff(u)_keff(uo)_cl5u _
2 = w = =
du? (Su)?
_9 ou ou

ou

where (§k/6u)"? are the quantities estimated from
first- and second-order derivatives, respectively. Since
the validity of perturbation theory is limited to small
perturbations, the reference condition is important for
a criticality search in a close neighbourhood. Such a
reference is used from the variational results of tab. 1.

The first and second derivatives are estimated as
0.2563 and —0.2889 for zone 1, and 0.0800 and
—0.0857 for the second zone, respectively. These are
used to predict kg for enrichment perturbations shown
in fig. 3(a). Thus, an increase in fuel enrichment in
zone 1 is balanced by a decrease in enrichment in zone
2 so that the net effect gives k 4~1 which leads to the
criticality pairs predicted as shown in fig. 3(b).

The results are accurate to within 1 % while the
computational effort is reduced due to derivatives col-
lected in a single run.

Further, the good reference condition provided
by preliminary variation results show that estimates
from both first- and second-derivatives, labelled FS
for zones 1 and 2 in fig. 3(a), are only slightly better
than the first derivative estimates, labelled F.

The previous analysis can readily be extended to
three zones for which Pontryagin's Maximum Princi-
ple gives a up;, U Umin Which agrees better with
Goertzel's condition for flat thermal flux, as being the
condition for minimum critical mass according to dif-
fusion theory. The results for the two-zone case are to
illustrate the variational formulation which gives a
maximum value for the Hamiltonian (eq. 7) fora u
Uy, configuration.

max?

EXAMPLE 2: NON-UNIFORM
DENSITY IN A FIXED SOURCE SYSTEM

Similar to the previous example, in a fixed-source
nuclear system, non-uniform material density may be
considered for both elements and mixtures (with con-
stituent elements) with the objective of increasing some
reaction rate or decreasing the size of the system. For
such an optimization problem, it would be desirable to
obtain the optimal material distribution. Such a problem
could use the continuous form of the variational formu-
lation. WithR, =<3 ,¢ >and > =N(x)o, =u(x)o,
the Lagrangian is B

L=<uc].¢p>+<¢"" Mp> (11)

with an objective to obtain the optimal distribution u*
by seeking first-order variations for a stationarity con-
dition.

With variations in u,¢,¢ " and M and requiring
the variations in the trial functions to be zero in the do-
main (excluding the boundary) we get for slab geome-

try

Li¢! +u(x)o, 143 =0 (12a)
Lyt +u(x)o, =0 (12b)
2 *
1 [ 1d 1d4 b+
t=1 30'”,1- Ndx N dx
+
Jd L (120)
dx N? dx

The previous formula are solved to give the
fluxes

¢, (x)= Ale}’lfu(x)dx + Aze*}’ll‘“(x)dx (13a)

§y ()= Az O 1 4,077 O gy (x) (13b)
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¢1+ (x):A7e}’|fM(x)dx +A86*7|f“(x)¢\f +

+{¢; (x)— s ]+GX (13¢)

Gr,Z Gr,2

¢; (x)=A5e}’zju(x)dx +A6e*72J‘“(X)dX n Ox (13d)
0-r,2

-1

2
O 1 w
wherey; =./30, 0, ;, @®=—" 1—(1j ,
2 ) ) @3
w; =0,;/30, ;(i=12)

Equations 13(a)-13(d) can be inserted in eq. 12(c) to
get the optimal distribution u*(x).

In the test problem, a slab of water thickness 20
cm is considered with a unit source of energy corre-
sponding to group 1. In this case the control variable is
the number density N(x) subject to the constraint of
fixed total material. The performance index is the (7, )
reactionrate Ry (, ,) = J':N (x)¢, (x)dx in water and it
is investigated whether the change in material distri-
bution results in an optimum PI. The boundary condi-
tions are thus

de, S
J (x=0)=-D;, —| =—
1 (x=0) ldx 0 2

and

g (x=L)=¢,(x=0)=¢,(x=L)=0

Validation is carried out by computing
two-group fluxes for material density uniform, lin-
early increasing and linearly decreasing as shown in
fig. 4.

For the previous three cases, results are shown in
fig. 5 where the gradual rise, then fall, in the group-2
fluxes is seen.

Figure 5 shows the effect of the density on group
fluxes. It is seen that both 'move towards the right' for

23
25 x10

T
i
'
'
'

heteaboty
R —
===
—
===
R
S

R —

0 2 ) 6 8 10 12 14 16 18 20
x [em]

Figure 4. Material density distribution considered for
uniform distribution, linearly decreasing and linearly
increasing distribution

0.025

0.01

0.005

x [em]

Figure 5. Neutron fluxes with MCNPS in group 1(£>
>5eV) and group 2 (E <5eV), and (n, y) reaction rate in
water; <¢; > is the zone-averaged neutron flux in energy
group i; subscripts o, d, u refer to uniform-density, lin-
early decreasing, linearly increasing density

+ MC 1

0 5 10 15 20 25
x [cm]

Figure 6. Neutron fluxes with two-group diffusion theory
compared with MCNP in group 1 (£>5eV) and group
2(E<5eV)

the case of linearly increasing material distribution.
These are compared with diffusion theory results
shown in fig. 6.

All three cases are shown in fig. 7 (diffusion the-
ory fluxes), where the left and right shift of the de-
creasing and increasing densities is seen.

Corresponding to the three cases, the PIis shown
in fig. 8 with the trend mentioned earlier, i. e., a grad-
ual shift towards the right for linearly increasing den-
sity.

To estimate the currents and subsequent doses,
MCNPS simulations were carried out for a slab (20 cm
x 10 cm x 10 cm) containing water, with a 1 MeV neu-
tron source incident on the left face (along the +x-axis)
of thickness of 20 cm. The front and back surfaces
were considered to be reflecting surfaces. The quanti-
ties tallied with MCNPS5 were i- currents (neutron F1:n
and photon F11:p tallies) emitted from the right face of
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0103 ted) neutron dose of 63 mrem h™!' compared with the

ICRP recommended maximum of 20 mSv per year (2

0.025 rem per year or 0.22 mremh ™). Without a water shield,

A a person at a distance 22 cm away would be receiving
. about 1000 times more i. e., ~ 63 remh ™.

The reaction rate Ry, ,, from the F14:N tally is

2.94552-10* (0.0034) cm™; the total volume is

0018 2200 cm® and thus Ry, , = 0.6480 reactions per

source neutron per second. Thus, for a source 108 neu-

0.01 trons per second, assuming one y produced per radia-

tive capture, the y production in the water slab would

0.005 be 0.6480-10% gammas per second. Less than 1% of

these would be produced from group 1 (high energy)

: captures; thus the reaction rate is almost entirely from

0 2 4 6 8 10 12 14 16 18 20
x [cm]

Figure 7. Neutron fluxes with two-group neutron
diffusion theory in group 1 (£ > 5eV) and group 2
(E £5eV) in a slab of water with uniform, linearly
decreasing and linearly increasing density

0.35

0.3}g---1
0.25{-

0.2

N(X)é2(x)

0.15
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0.05}--;

1 1
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Figure 8. Performance index with two-group neutron
diffusion theory in group 1 (£ > 5eV) and group
2(E< 5eV)

the slab, ii- dose equivalents in Sieverts (neutron and
photon using dose equivalent factors), and iii- the re-
action rates Ry(n, y) in cells of thickness 2 cm each in
two energy bins (E; <5eVand5eV<E,<1 MeV).
The results for NPS = 10° with a PHYS:P cutoff at
100 keV (PHYS:P 100 1 1) which took 5.14 minutes
on an Intel(R) Core i7-2620M CPU at 2.70 GHz 32 bit
operating system, are given in tab. 3.

Since 1 Sv = 100 rem, the neutron dose is
~6.3-10%rem h™! for 1 source neutron per second; thus
a neutron source of 108 s™' would result in a (transmit-

Table 3. Transmitted neutron and photon dose
FI:N F2:N (Dose) F1:P F2:P (Dose)
Neutrons Sv Photons Sv

1.67067 x 1072 4.10858 x | 1.6866 x 107 |1.6222 x 107
0.0177) 1107 (0.0562)|  (0.0085) (0.0123)

group 2 (lower energy) as expected from nuclear
cross-section data.

It is seen from the MCNPS5 results, in tab. 4, that a
linearly decreasing density distribution (subject to con-
straint of fixed available material) gives an increase of
~4 % in the gamma production and ~1 % increase in the
transmitted photon current and no significant increase
(~<1 %) in the transmitted neutron current, compared
with the uniform case. Out of all three, the decreasing
density case leads to (a slight) enhanced photon produc-
tion with enhanced transmittance.

Exact solutions were obtained for the two-group
neutron fluxes, eq. 13(a) and eq. 13(b), for three cases
viz u(x) = const., u(x) ~ 1/x, and u(x)~x.

The group constants used for water are listed in
tab. 5. In the present work, the data was obtained by us-
ing a correction factor in which o, , o, , were modi-
fiedto 0.5004 b and 90 b from 0.58869 b and 99.185 b,
respectively, taken from Lamarsh and Barrata [17].

The molecular density of water in 3.3461-10%
molecules per cm? and, for case i (uniform density),
the mean free paths are 2.9688 cm and 0.1107 cm, re-
spectively, with D, = 1.13 cm, L, = 5.1961 cm, D, =
=0.1107 cm, L, =2.5711 ¢cm, 7 ~27 cm? and diffusion
area ~6.61 cm?. Further, to match DT and Monte Carlo
results for the PI for case / (uniformdistribution), o, =
=87.475D.

Since MCNP5 does not have options to generate
group cross-sections [ 18], these two-group cross-sec-
tions can be obtained by using group fluxes ¢; and as-
sociated reaction rates <o ,¢>(where the inner product
<...>implies integration over the energy group of in-
terest), and setting the group cross-section, for group i,
asc) =<o ¢ >/¢,.

The existing methodology for obtaining
multi-group cross-sections is based on reading ENDF
pointwise cross-section data, by processing codes such
as  NJOY (LANL) and MC?-3 (ANL) to produce
binned cross-sections for use in multi-group determin-
istic codes. This is achieved by the group flux-weight-
ing mentioned above and accounting for resonances
and self-shielding.

The PI's for cases i-iii are
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Table 4. Tallies for varying material distribution

N(x) FI:N Dose [Sv] (n,g) avg [ems™'] F1:P
Decreasing 1.72933-107 (0.0174) 4.89229-107" (0.0580) 3.03990-10 (0.0033) 1.74480-10"" (0.0084)
Uniform 1.71458-107 (0.0175) 4.25899-107" (0.0563) 3.00075-107* (0.0033) 1.71930-107' (0.0084)
Increasing 1.65803-107 (0.0180) 4.84695-107" (0.0605) 2.98457-10 (0.0033) 1.69710-10"" (0.0085)

Table 5. Two-group cross-sections

Data/Group 1 2
o, [b] 1.2508 0.5004
oy [b] 8.8158 90

I x X
L L
Pl =N|| A5 L,e™ —AyLe 72 +

X X

+wod, Lie" —wody Lie 1|2 ] (14a)

where
2 27"
— o L — (o2
wo =—"L 1_[2j , o, =" 1_('BIJ
O-r,Z L] Gr,Z ﬂz

b 2
Bi=ANyy;,A=1/Inb/a,and I5(c) = [xe™ dx

1

Values of the PI from eqs. 14(a)-14(c) are given
in tab. 6.

For the uniform case, the DT exact result
matches well with the MCNP estimate Ry(n,y) =
= (0.6480 reactions per source neutron per second, us-
ing the radiative capture cross-section o,,, =87.475 b.
Further, the PI values for the theoretically limiting
cases considered (cases ii and iii) show a relative de-
crease of about 2 % from the uniform distribution case.
These estimates can be used to show, that there is only
avery slight dependence of PI on the material distribu-
tion in this problem. However, the spatial distribution

Table 6. Comparison of PI for varying N(x)

N (x) PI
Lin. Dec. 0.63651
Uniform 0.64801
Lin. Inc. 0.63651

of the Pl is seen to be dependent on the distribution of
the material.

A situation of more practical significance is for
mixtures of materials, where the optimal ratio of constit-
uent elements is obtained, as for the enrichment in multi-
plying systems described in the previous section. Such
applications arise for the radiation shielding surrounding
nuclear systems. The size and design of such shields de-
pends on the intensity and energy of the radiation as well
as the material of the shield. Neutron shields are more ef-
fective and thus smaller in size, when the hydrogen con-
tent, as in water, is high while for photons, high atomic
number materials such as iron and lead are preferred. The
design proceeds along the following logic: slow the neu-
trons, then absorb, and finally absorb the gammas pro-
duced by the slowed neutrons (as in the H(n, y) reaction
estimated in the previous section). A typical shield would
thus consist of a hydrogenous or light atomic number
material followed by a neutron absorber, such as boron,
followed by a gamma shield. As an example, the
half-value thickness of lead (Z=82) for 1.0 MeV gamma
radiation is ~0.76 cm which is half that of iron, which is
about three times less than concrete while water is least
effective of all these. Thus, for the last layer, lead would
be thought to be the best choice.

Multilayered concrete shields

The design of multilayered concrete with aggre-
gates (mainly gravel) is bound together by cement
(mainly lime or calcium oxide, silica aluminium oxide)
and water into a hard stone-like material with the re-
quired strength for structures such as buildings, bridges,
roads etc. The relative composition of its constituents can
be varied to provide the required mechanical e. g., the
strength of concrete varies inversely with the mass ratio
of water to cement. While Type 04 appears to be repre-
sentative [19] withp =2.35 gem 3, high-density concrete
is made by mixing additives like scrap metal and magne-
tite. Piotrowski et al. [20] have carried out simulations
for 25 cm thick wall of concrete of varying compressive
strength to find that the effective dose behind the shield
decreases up to 44 % as the compressive strength in-
creases from 30 MPa (4351 psi) to 60 MPa (8702 psi)
with water-cement (w-c) ratio 0.72 to 0.31. In other stud-
ies [21] the effect of boron in concrete has been studied to
find that the optimal mixture of thermal neutron shield-
ing concrete has a water-cement ratio of 0.38, cement
content of 400 kgm, a volume fraction Colemanite ag-
gregate of 50 % and silica fume-cement ratio of 0.15.
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Similarly, the effect of another strong absorber, gadolin-
ium, has been studied [22] to find that in concrete Gd
content up to 10 at.% concrete composite (10 cm x 5 cm
thick) shielding efficiency of around 86 %). For
multi-layered iron-water shields [23] the optimum ar-
rangement reported is the thick iron-water-thin iron con-
figuration, rather than a homogeneous mixture of iron
and water layers. Optimization for shields has also been
used with Genetic Algorithms [24] for the search for an
optimal radiation shield configuration subject to a given
set of constraints. A number of innovations such as
nanomaterials in concrete have also been investigated
[25].

Multi-layered detector shields

Another problem of practical application, is for
detection systems for materials' identification by ther-
mal neutron activation [26]. For such systems,?>>Cf
has been used as a neutron source with emissions of
2.4-10"2s7! g7!. In detectors, especially portable detec-
tion systems, size and weight are crucial and hence an
optimal design is of paramount importance. Light
weight hydrogenous materials such as polyethylene,
paraffin and water are thus good candidates for neu-
tron shielding compared with heavy materials such as
steel and lead.

The variational formulations presented are
readily applicable for obtaining optimal radiation shield
designs for the above cases.

CONCLUSIONS

In the first illustrative example for variational
application in Monte Carlo, a two-zone optimality
analysis yielded the condition for minimum critical
mass with maximum fuel enrichment in the central
zone and minimum enrichment in the outer zone. This
information was used in a detailed Monte Carlo simu-
lation which, in a single run, estimated first- and sec-
ond-derivatives for prediction of k. for enrichment
perturbations in both zones. These predicted estimates
were subsequently used to estimate the minimum con-
dition which was predicted to within 1 % of the re-run
estimate, clearly demonstrating the benefit of using a
variational estimate for computational enhancement
of an elaborate MCNP simulation. Such an approach
can, in principle, be used for larger problems.

In the second illustrative example, a continuous
variational formulation was attempted to estimate the
benefit of a non-uniform density distribution for a sin-
gle material. It was found that an exact solution was
not achievable and recourse would again be required
for a discrete approach, as in the first example. How-
ever, it was possible to estimate the perturbation re-

sulting from non-uniformity. The application of this
approach to the design optimization of radiation
shields was discussed.

Both examples illustrate the advantage in using
preliminary variational results from two-group diffu-
sion equations, as an initial guess in a MC perturbation
strategy to yield reliable estimates.

NOMENCLATURE

b —barn (10%*m?)

D; — diffusion coefficient for group i
H  —Hamiltonian

/| — energy group index

» — infinite multiplication factor

— control variable

— enrichment

— current, J; = —-D;V@;

— slab width

— diffusion length for group i

=~ ~

— differential operator for energy group i
— adjoint operator

— molecular (atomic) weight

— two-group operator

— atomic density

Nt — total number of atoms (=NV)

N, o — pN av/M

N, — Avogadro's number (6.023 10> atoms/g-atom)
p —resonance escape probability

R, —reaction rate for reaction type k&

V' —volume

SHSSSESINES

=X

Greek symbols

A — Lagrange multiplier

L — Lagrangian

p — gram density

oy — microscopic cross-section for reaction k&

T —neutron age

¢; —neutron flux for energy group i

¢ adjoint flux (Lagrange multiplier)

Y, — macroscopic scattering cross-section (group 1)

¥, —macroscopic absorption cross-section (group 2)

Yy — macroscopic cross-section for reaction k&

Y 512  —macroscopic scattering cross-section
grp 1 ->2

Abbreviations

DT - diffusion theory

DTPMP — diffusion theory Pontryagin
maximum principle

ENDF - Evaluated Nuclear Data File

F1:N/P — current tally for neutrons/photons

F2:N/P — surface flux tally for neutrons
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ICRP - International Commission on Radiological [14] Kumar, A., Tsvetkov, P. V., A New Approach to Nu-

Protection clear Reactor Design Optimization Using Genetic Al-
NPS ber of particles simulated gorithms and Regression Analysis, Annals of Nuclear

— humber ol particles simulate Energy, 85 (2015), Nov., pp 27-35

PI — performance index [15] Tengfei Zhang, et al., Acceleration of 3-D pin-by-pin
PMP - Pontryagin maximum principle Calculations Based on the Heterogeneous Variational
rem  — Roentgen equivalent man (traditional unit) Nodal Method, Annals of Nuclear Energy, 114(2018),
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3agap Yaax KOPEIIN, Xampa KAH, Myxamen JAKYD

BAPNJAIIMOHU METOIU U YBP3AILE MOHTE KAPJ/IO IMPOPAYYHA
NEPTYPBAIIMJA PAIN OIITUMAJHOTI JU3AJHA HYKIEAPHUX CUCTEMA

Ilorpara 3a omnTHMagHOM pacIOfEJIOM MaTepHjaja y HyKJICapHOM CHCTEMY pajgu
MakcuMu3anyje (pyHKI¥je OI31Ba Of HHTepeca, TeMa je Off 3Hauaja y 00JacTH HyKJIeapHOT HHXKEHEPCTBA.
Hexu o npuMepa cy onTuMaiHa pacrofesia TOpHuBa y je3rpy HyKJIeapHOT peaKTopa Kako OH ce OCTBapuiIO
YHH(OPMHO caropeBame KOpHITherheM MHHAMyMa KPHTHYHE Mace, WIH TPUMEHAa KOMIO3UTHHX
MaTepHjaia ca ONTHMATHOM CMEIIOM IPaJJMBHAX €JIEMEHATA Y IETEKTOPCKUM CHCTEMA WIIH Y 3aIITHTH Off
3pauewa. BapwjanumoHe MeTole KOpHCHE Cy 3a OBakBe MpOpadyHe, aju Cy KopuimheHe camo 3a
NojeANHAYHE aHAJIN3Ee YeCTO OTpaHNYeHE Ha HcaIn30BaHe MOfiesIe, IOK CY 3a fleTalbHUje MIPOjeKTOBAE
O6mne moTpebHEe KOMIjyTepckn 3axTeBHe Monte Kapno cmmynanuje HemogoOHe y HUTEpaTUBHUM
onTuMu3anuoHnM memMama. OBa mHXepeHTHa MaHa MonTte Kapio Metona mpoMemeHa je ca pa3BojoM
nepTypOalMOHNX airopuTaMma, ajld je HHXOBa e(UKACHOCT W Jajbe 3aBUCHA Off pegheperiiine
KOH(Urypaigje 3a Kojy ce MeTofia IIOroAu-1-Ipo6aj 4ecTO KOPUCTHU. Y TIPBOM IIIyCTPATUBHOM IPUMEPY Y
OBOM pajly, UCIUTY]e ce yOp3ame MpopavyHa 3a oo NWINHPUIHO je3TPO PeakTopa, 10O01jeHO IPUMEHOM
BapHWjallMoOHOT pe3yiTaTa Kako 6m ce mobosplnana edukacHocT npopauyna Monre Kapmo cumymnanmja
OoNTHMU3alLlUje AU3ajHa. Y APYroMm IpuMepy, NpUKa3aH je yTUlaj HeyHu(OpMHe T'YCTHHE MaTepujana y
(pUKCHO NO3UIMOHUPAHOM U3BOPY, KOjH j€ IPUMEH-UB 32 IPOPAYyH ONTHMAIHOT MOiepaTopa 1 3allTUTY Off
3pauema. Mako cy ynmorpebe oBOT MpucTyna OpojHe, IIMJb OBOT pajia je ja NMpHuKake NMpeIMMUHApHE
BapHWjalloOHE pe3yliTaTe Kao yia3He MoAaTKe 3a pa3pady croxacTmuke ontmmmianuje Monrte Kapio
CHMYyJIalyja 3a BEJIUKE U PeallHe CUCTEME.

Kwyune peuu: sapujayona meitiooa, oditiumanta paciiooeaa, Monitie Kapao iiepitiypbauyuja, HykaeapHu
cucitem, MUHUMAARA KPUTLUYHA MACA




