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From a homeland security point of view, it is important to detect the transportation of radio-
active materials or potential radioactive contamination. The most commonly used devices are
radiation portal monitors with plastic scintillation detectors. A signal from such detectors is
processed by an amplitude analyser which can separate pulses into several mutually independ-
ent energy windows (representing energy intervals of gamma radiation). Therefore, the most
appropriate method of evaluation is by the use of algorithms for multidimensional process-
ing. This article describes a novel generalised approach designed with respect to the properties
of radiation portal monitors. It includes a description of formulas and a whole algorithm as
well as the procedure for determining the appropriate critical and detection limits. The pre-
dicted probability distribution for the proposed method of calculation was verified by simula-
tions and experimental measurements. The algorithm was also compared with a commonly

used gross counting algorithm.
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INTRODUCTION

Even though there are many different algorithms
for lowering detection limits [1-3] and a basic identifi-
cation of measured nuclides [4, 5] in the field of radia-
tion portal monitors, the most commonly used ap-
proach is the direct gross counting of pulses in each
energy window (or their sum) independently. The idea
of'this algorithm is based on a fact, that the radioactive
decay follows a Poisson distribution [6]. More-over,
for high count rates the Poisson distribution can be ap-
proximated by a normal distribution [7, 8]

Po(A)=N(A,A), ford— e @)

This is the consequence of the central limit theo-
rem allowing the measured data to be processed as a
test of the parameters of a normal distribution. To be-
gin with, it is important to estimate the parameters of
the random variability of background radiation B ~
N(up, 1p). Because the sample mean is an unbiased es-
timator of the population mean, the value 1 can be es-
timated as a sample mean from a sufficient number of
measured values of background radiation.

* Corresponding author; e-mail: tomas.grisa@nuvia.com

The normal random variable, B, then describes
the stochastic behaviour of background radiation.
With respect to the properties of the normal distribu-
tion, a critical limit (decision threshold) L is calcu-
lated according to [9] and ISO 11929:2010 [10] as

Lo =pp +kyof1g @)
where k,_, is the quantile of the standard normal dis-
tribution for probability 1 — a. The value o specifies
the probability of false alarms being caused by natural
variations in the background radioactivity.

An object is then said to be radioactive if the
measured number of pulses is greater than L [9]. Fur-
thermore, it is important to calculate the detection limit
Ly [9, 10], which describes the minimum number of
pulses required for an object to be said to be radioac-
tive with a pre-set probability (1 — /). The relationship
between L and Ly is illustrated in fig. 1. With respect
to eq. (1), the following equation holds true

Ly =Lc+k_gLp 3)

The value Ly, is then for a simple gross counting
algorithm (GCA) calculated as the positive root of the
following quadratic equation
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Figure 1. The relationship between a critical limit L and
a detection limit L

Lh —Lp (2Le —kip)+1e =0 )

ALGORITHM DESIGN

When processing a signal from a plastic scintil-
lation detector using an amplitude analyser with more
mutually independent energy windows, it is important
to use algorithms for multidimensional data process-
ing. If the energy windows are evaluated independ-
ently with a GCA, then it is not straightforward to set a
false alarm rate as well as to define the detection limits
of a whole system.

Let us assume an amplitude analyser with n mu-
tually independent energy windows, where the num-
ber of counts in each channel is represented by a nor-
mal random variable X, ..., X,. Together, they are
represented by an n-dimensional normal random vari-
able (random vector) X with the following probability
density function X

fi) = exp [—%x—ufz“ (X—u)} 5)
NeE 2
where
Hy,
p=| (6)
Hy

n

is a mean vector and the following matrix X is a
covariance matrix with variances equal to
My, s> My, on its diagonal and the off-diagonal ele-
ments are equal to zero.

My, o ... 0
0 .0

S e ™
0 0 ... uy

n

The zero values of the off-diagonal correlation
coefficients are a consequence of independent random
variables X, ..., X,. This assumption is natural, be-
cause even if a nuclide with multiple energy lines per

disintegration is measured, the resulting gamma pho-
tons are independent — if one such gamma photon is
detected, it does not guarantee that others must be de-
tected as well. However, if they were to be detected to-
gether (from the same disintegration) they would be
summed together. Although the count rate would be
increased in multiple windows, they are statistically
independent. Moreover, the assumption of zero corre-
lations is the same as for the gamma spectrum, where
all channels are not correlated — otherwise the total
count rate of the spectra would not follow the Poisson
distribution.

Now, let us calculate the distance of each mea-
sured point x from a n-dimensionl space to point
n=[4y, ...y by using the Mahalanobis distance

[11]

D(x,p)= (®)

The random variable calculated as D(x, p)? fol-
lows an y? distribution with n degrees of freedom.
Therefore a n-dimensional confidence region which
would include (1 —a)-100 % of the measured values is
represented by an n-dimensional ellipsoid. However,
the confidence region would exclude those cases in
which the measured values are much smaller than their
mean values. But this is undesirable — we are inter-
ested in cases where measured pulses are higher than
background radiation. Therefore, let us assume the
following modification of the distance calculation,
which creates the random variable ¥

. max(x; —ty ,0 2
N R )
i=1 Hy,

i

)

The calculation of a cumulative distribution
function of such a random variable is not straightfor-
ward due to the max (x; —uy ,0) term in eq. (9). The
sample space has to be divided into 2” disjoint regions
and the resulting cumulative distribution function is
obtained as a sum of a cumulative distribution function
for each region.

To illustrate how the cumulative distribution
function is derived, let us assume n = 2 and the follow-
ing equation, where the right-hand side represents the
probability that the random variable Y takes on a value
less than or equal to y

Fy (y)=P <y)=1=-P(Y > y) (10)

As described, the sample space has to be divided
into the following disjoint regions.

Region x| <1y ,x; <py,

The eq. (11) describes the probability for the un-
ion of events that ¥ > y together with X', <u, and
X, <py,,whichcanberewritten in the formof'a con-
ditional probability.
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PY >y)=PY >yNX| <py NX, <py, )=
=P(X| <py, ) P(X, <py, )
~P(Y>y‘ Xy <py, NXy <py, )=

: 'P(O>J/‘X1 <py, NXy <py, )=

=N =
=N =

-P(0>y) an

Because the resulting distance is in this region
always equal to zero, then the conditional probability
is equal directly to P (0>y). The result s for this region
described by the eq. (12)

1/4, for y<0

Region xy > 1y ,x; <py,

For this region the modified distance calculation
is affected only by x,, therefore the resulting random
variable Y over this region follows the standard normal
distribution. However, the conditional probability for
modified distance over this region is not equal directly
to 1 —d(y), where ® is a cumulative distribution func-
tion of the standard normal distribution, but must be
rescaled by the correction factor 2, because (1 — D(y))
gives in this region values from 0 only to 1/2

P(Y > y)=P(Y > yN X, 2y, N X, <y, )=
=P(X, 241y, ) P(Xy <piy, )

11
P(Y>yX1 Zlqu ﬂXZ <HX2):5.5.
.P((Xl _'uxl )/ \I'uX1 >y‘ Xl 2,uX] sz <:“X2)
(13)
) for y<0
P(Y >y)= (14)

-(1-D(y)), for y>0

Region x; > 1y ,xy <pry,

This region is similar as in the previous case.

P(Y > y)=P(Y > yN X, <piy, N X, 2y )=

=P(X, <py ) P(Xy2py, )

11

PY >y X <py, NnXx, >y ):E.E.
P Xy —px, ) iy, >y Xy <py NX, Zpy)

(15)

s for y <0
P(Y >y)= (16)

[1-D(y)], for y>0

N =B =

Region xy > 1y ,x; 2 1y,

Only in this region is the modified distance cal-
culation affected by both x; and x,. Therefore, the re-
sulting random variable Y over this region follows x>
distribution with two degrees of freedom. The result
for this region described by the eq. (18), where G is a
cumulative distribution function of x? distribution
with two degrees of freedom.

P(Y > p)=P(Y >y X, 21y N X5 2p1y, )=
=P(X| 2py, ) P(Xy 2y, )

11
PY >y | X 2py NX, zﬂXZ)ZE.E.

2
PEX —py, V' Juy, > VX 2y DX, 2 )
z

(17

, for y<0

—_ -

P(Y >y)= (18)

—(1-G(y* 2)), for y=0

o

The resulting cumulative distribution function
for case n =2 is given as

1, for y<0
P >y)= (1—<D(y))+%~(1—G(y2, 2)). for y>0
(19)
Fy(y)=P(Y <y)=
0, for y <0
= 1—[1—@(y)+%-(1—G(y2,2))], for y>0

(20)

For the general dimension 7, there will always be
n regions, where the resulting random variable Y fol-
lows the standard normal distribution. The area of
each region is equal to 1/2" and because the correction
factor 2 must be applied, then n/2" ! - ([1 — d(y)) rep-
resents these regions. For other regions, the resulting
random variable Y follows the y distribution with var-
ious degrees of freedom. The number of such regions
(for i representing the degrees of freedom) is equal to
(’l? ). Therefore,

{(1-G(y*,1))

represents all such regions. The last region is equal to
zero, because it represents the cases, when values in all
random variables are less than their mean values.

Therefore, in general, the cumulative distribution
function of the proposed random variable Y is conse-
quently given as the following eq.
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Figure 2. Cumulative distribution functions forn=2,...,9

Fy(y,l’l):
0, for y <0

) NG

(1= (1 2 .
=1 1| g 7O+ 2 (=G(.0)

for y>0
€2y

Figure 2 illustrates the derived cumulative distri-
bution function for n =2, ..., 9. A measured object is
therefore said to be radioactive if the following equa-
tion holds true .

D (x.0) > ki (n) (22)
where k'|_o(n)isa quantile of the derived distribution.
Commonly used quantiles were numerically calcu-
lated and are stated in tab. 1.

According to the ISO 11929:2010[10], a set of x,
for which D*(x,p)=k", _(n) holds true defines a n-di-
mensional analogy of L. This is illustrated forn =2 in
fig. 3 for various values of .

If we are also looking for a n-dimensional anal-
ogy of L, then it is defined as a set of n-tuples [0, ...,
6,], forming n-dimensional manifolds (in 2 dimen-
sions: curves), parameterized by a and S, for which
the following equation holds true

1
[, ]

‘exp(—;(X—Hs)Tzal (x—ua)de=ﬁ 23)

Table 1. Table of quantiles k*l _o(@m)forn=2,...,9
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Figure 3. Relationship between L and Ly. Analogy of Lc
forn=2

where
6,
Mg =| (24)
5}1
6, 0 0
2s= . (25)
0 0 - o

n

and Q is a set, for which D*(x, p) < k"1 _(n) holds true.
In general, an analytic calculation of such n-tuples is
difficult. Therefore, eq. (23) has to be solved numeri-
cally. Another numerical approoch ispresented in the
Annex. The 2-D analogies of Lp fora =0.01 and vari-
ous values £ are illustrated in fig. 4.

Figure 5 illustrates a global case with 2-D analo-
gies of L and Ly, It illustrates values of background
radiation (the random variable B) as well as values of a
measured object (the random variable X), which lies
directly on the threshold Lp,. The values of background
radiation will lie beyond the borderline L. with the
pre-set probability « (false alarms). In contrast, the
values of a measured object will lie in front of the bor-
derline L with the preset probability 8, which means
that Ly is the threshold line indicating the lowest value
which can be detected with 1 — 8 probability.

|-«
" 0.90 0.95 0.975 0.99 0.995 0.999 0.9995
2 1.7183 2.0568 2.3531 2.6999 2.9374 3.4297 3.6222
3 2.0025 2.3312 2.6194 2.9574 3.1892 3.6707 3.8593
4 2.2260 2.5491 2.8325 3.1652 3.3935 3.8681 4.0541
5 2.4156 2.7349 3.0151 3.3441 3.5699 4.0394 4.2235
6 2.5829 2.8995 3.1772 3.5034 3.7274 4.1930 4.3757
7 2.7342 3.0487 3.3246 3.6486 3.8710 4.3336 4.5150
8 2.8735 3.1863 3.4606 3.7828 4.0039 4.4639 4.6443
9 3.0030 3.3144 3.5875 3.9082 4.1282 4.5860 4.7656
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Figure 4. Relationship between Lc and Lp. Analogy of Ly
forn=2

Figure 5. Relationship between L¢ and Ly for n =2

The advantage of the suggested approach of data
evaluation from an amplitude analyzer with more energy
windows is the direct control over the values o and
which leads to precise calculation of critical and detec-
tion limits. The difference between the suggested ap-
proach and the evaluation of data from each channel in-
dependently by a GCA can be seen in fig. 6 and fig. 7,
where the bold line represents L for the suggested ap-
proach and the dashed lines represent the evaluation of
each channel independently. For illustrative purposes
n=2.

The first case shows the situation in which the
value of L is calculated for each channel independently
with the probability o = 0.01. The diagonal line (which is
inclined according to the relative contribution of both
channels to the total count rate) represents L for an aux-
iliary summary channel (often used for an additional re-
duction of detection limits, because it represents a total
count of impulses from a detector). In this case (fig. 6) the
lower detection limits are reached but at the cost of a
higher ratio of false alarms — three channels, each with
the probability & = 0.01. Therefore, the total ratio of false
alarms is 3 cases out of each 100 measurements (in this
particular example 9 cases of total 300 measurements —
highlighted by a rhombus mark).

Figure 6. Comparison of the proposed algorithm (bold
line) and the evaluation of each channel independently
(dashed line). The diagonal line represents the auxiliary
summary channel. Probability o = 0.01

: =1
\‘.f’@\ 21
TN =]
. \\'0@"? oy
\\d:/ _g:

s T\ Lo(er = 0.0333)
et ol

Figure 7. Comparison of the proposed algorithm (bold
line) and the evaluation of each channel independently
(dashed line). The diagonal line represents the auxiliary
summary channel. Probability o = 0.00333

The second case shows a similar situation, how-
ever the probability & = 0.01/3 = 0.00333 is used for
each channel, where the divisor 3 represents the total
number of channels (together with an auxiliary sum-
mary channel), which are evaluated independently
(using this assumption helps to achieve the same
amount of false alarms as for the proposed approach
with @ = 0.01). Figure 7 shows the direct comparison
of a calculated threshold L. for the suggested ap-
proach and the simple evaluation of each channel inde-
pendently.

PROBABILITY DISTRIBUTION
VALIDATION

A random number simulation was used to test the
suggested approach. Four sets of random values (each
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of 5000 observations) with the normal distribution X,
=Ny, ), ooy Xy = N(iy, p4) with known parameters
Hy,..., iy were generated for the purposes of a simula-
tion. Then D"(x, n) was calculated according to eq. (9)
for each quadruple. The Kolmogorov-Smirnov test
[12] with the null hypothesis that the sample comes
from the hypothesised distribution was used to test if
the calculated values have the predicted distribution
defined by (21). Based on the result p-value = 0.677,
the null hypothesis is not rejected at a significance
level o = 0.05.

In addition, real experimental data were acquired
with NuSAFEGATE, which is used as a hidden radia-
tion portal monitor for pedestrian monitoring and was
developed by NUVIATech Instruments. This detection
module contains a 4-channel digital counter and a 1.6 1
(100 x 4 x 4 cm) polystyrene-based plastic scintillation
detector. The detection energy range is up to 2 MeV of
gamma radiation. Because the Compton scattering is
the dominant mechanism for photon energy deposition
in plastic scintillators ([13-15]), boundaries of all en-
ergy windows were set according to [4]. The energy
ranges of absorbed gamma radiation for all four energy
windows (EW1 to EW4) are listed in tab. 2.

For this experiment, counts in each energy win-
dow were recorded with a period of 250 ms. The val-
ues [y ..My, were calculated as a sample mean
from 7200 samples (30 minutes). Then another 5000
samples were acquired and for each sample the value
D*(x, p) was calculated according to eq. (9). Finally,
the Kolmogorov-Smirnov test was performed as for
the random number simulation. Based on the result
p-value =0.341, the null hypothesis is not rejected at a
significance level a = 0.05. Results of both tests are
graphically illustrated by Q-Q plots in figs. 8 and 9.

COMPARISON WITH THE
COMMONLY USED METHOD

The performance of the proposed algorithm was
experimentally compared to the commonly used
GCA. This experiment was conducted with sources
listed in tab. 3. The sources were placed one ata time at
a 0.5 m distance from the front cover of the detection
module and 100 samples were acquired for each
source. The acquisition period was set to 1 second.
The gross background counts are listed in tab. 4 and
the net counts per second per kBq at a 0.5 m distance
for each energy window are presented in tab. 5.

Based on the measured values, the critical and
decision limits were calculated for each radionuclide
according to the eqs. (22) and (23) with probabilities

Table 2. The energy ranges of absorbed gamma radiation
for each energy window

3 : " y '

Theoretical quantile
w
1

Sample quantile

Figure 8. The Q-Q plot of a random number of a simu-
lated and predicted distribution

Theoretical quantile

Sample quantile

Figure 9. The Q-Q plot of measured and predicted
distribution

Table 3. List of used sources with activities

Nuclide Reference Reference Activity
date activity [kBq] [kBq]

Cs 01.07.2015 881.1 789.857

OCo 01.07.2015 849.9 455.558

2 Am 01.07.2015 864.5 857.950

e 31.12.2018 524.5 346.102
12y 31.12.2018 4479 420.381
133Ba 31.12.2018 83.76 77.191

Table 4. Gross background counts per second (cps)
for each energy window

EW1 [cps]

EW?2 [cps]

EW3 [cps]

EW4 [cps]

512.50

134.22

73.81

18.55

a=0.01 and B8 =0.1. In addition, the critical and deci-

EWI [MeV]

EW2 [MeV]

EW3 [MeV]

EW4 [McV]

0.04-0.24

0.24-0.63

0.63-1.45

1.45-2.0

sion limits were calculated for the GCA according to
the egs. (2) and (3) witha =0.01/5=0.002 and 8 =0.1
for all four measured energy windows and one win-
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Table 5. Net counts per second (cps) per kBq at a
0.5 m distance for each energy window

Nuclide | EW1 [cps] | EW2 [cps] |[EW3 [cps]| EW4 [cps]
B7Cs 1.042 0.715 0.224 0.022
OCo 1.329 1.152 1.115 0.262
¢y 2.577 1.812 0.631 0.080
2By 2.045 0.800 0.439 0.090
133Ba 2.461 0.446 0.045 0.008
T Am 0.208 0.006 0 0

dow representing total counts. However, this approach
does not give the overall performance of the whole
system with more energy windows, because the auxil-
iary summary channel is correlated with other chan-
nels. Therefore, the detection limits with an overall
non- detection probability § = 0.1 for all four mea-
sured energy windows and one window representing
total counts were numerically established as well.

The detection limits as the minimum detectable
activities (MDA) in kBq according to the ISO
11929:2010 [10] are presented in tab. 6 for the pro-
posed algorithm and a GCA. It can be seen that the true
MDA for an overall GCA is generally lower than direct
calculation of MDA for each energy window sepa-
rately. Moreover, the direct comparison between the
proposed algorithm and a GCA is presented in tab. 7.
The values describe the decrease or increase of MDA
as a percentage when the proposed algorithm is used
instead of a simple GCA.

It can be seen that the proposed algorithm brings
improvement of detection limits for radionuclides
with higher energies, which significantly contributes
to more than two energy windows. Therefore, the most
significant decrease of MDA was achieved for ©°Co.
On the other hand, an increase of the MDA was ob-
served only for '*3Ba and ?*! Am, because their contri-
bution is significant only in the first two energy win-
dows, which can be seen in tab. 5.

CONCLUSION

The new generalised algorithm presented in this
work, based on a multidimensional data analysis, is
shown to work properly for the purposes of data evalua-
tion from radiation portal monitors. Tests were pre-
sented for simulated and measured data, showing that
the algorithm provides accurate critical and detection
limits, which correspond to the statistical behaviour of
measured data from radiation portal monitors. More-
over, the comparison with the commonly used GCA re-
vealed that it can decrease detection limits for
radionuclides, which significantly contributes to more
than two energy windows. The proposed algorithm not
only brings the simple combination of various energy
windows into one resulting outcome (this reduces the
amount of data, which are typically transmitted to an

Table 6. Detection limits as MDA in kBq for the proposed
algorithm (D*) and a simple GCA with a non-detection
probability 5 = 0.1 for overall evaluation with all energy
windows together and for each energy window
separately

3706 [ 000 T1340s [ 1925y | 13Ba | #1Am
D* 51.3 | 22,5 | 20.1 | 32.5 | 36.8 | 470.3
GCAoverall | 53.4 | 253 | 21.0 | 33.4 | 36.5 | 455.5
GCA separately| 57.8 | 30.0 | 22.7 | 34.3 | 39.1 | 464.9

Table 7. Decrease or increase of MDA as a percentage
when the proposed algorithm is used instead of a simple
GCA

137CS 60C0 134CS 152Eu 133Ba 241Am
—-3.93 % |-11.07 %| —4.29 % | —2.69 % | —0.82 % | -3.25 %

operating centre and are stored for further investiga-
tion), but also the immediate control over the ratio of
false alarms and a proper method for calculating the
critical and detection limits of the whole system. There-
fore, it is appropriate for simple hidden radiation portal
monitors, which were developed by NUVIATech In-
struments. On the other hand, the approach to calculate
the MDA for various nuclides is not straightforward and
easy. However, normally there is no need to calculate
them during each measurement. The MDA for portal
monitors are typically calculated only as a system char-
acterization for new geometries and various ambient ra-
diation backgrounds.
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ANNEX

The easiest way to solve eq. (23) numerically is
by using the Monte Carlo integration method. It is a
particular Monte Carlo method that numerically com-
putes a definite integral by using random numbers.

Let us assume an example case with n energy
windows. To calculate the MDA value for some partic-
ular radionuclide, one needs to measure the response

to the ambient radiation background (in terms of gross
background counts per acquisition interval for each
energy window) denoted as u4,..., i, and efficiencies
for a given radionuclide (in terms of net counts per ac-
quisition interval per activity) for each energy window
denoted as ¢,..., &,.

The MDA value is then estimated iteratively by
generating n sets of random values with the normal
distribution — this represents the probability density
function in the eq. (23). The ratio of n-tuples, for
which D" <k, (n)(representing the set ), to the to-
tal number of generated n-tuples gives the non-detec-
tion probability. The goal of this algorithm is to find
such n sets of random values, for which is the non-de-
tection probability is equal to the required value 3.

To achieve this, a parameter corresponding to
the minimal activity increase step (denoted asd) has to
be set. For example, if the efficiency is given in net
counts per acquisition interval per kBq and the 6 were
to be equal to 1, then the minimal resolution of the
MDA would be 1 kBq. The MDA calculation is then
described by the following pseudocode.

MDA calculation:

n < number of energy windows
Ui, .., Uy < gross background counts per acquisition
interval for each energy window
£1,..., &y < efficiency for a given radionuclide in
terms of net counts per acquisition interval per activity
for each energy window
0 < minimal activity step
a <« false alarm probability
[ < non-detection probability
k;_, (n) < quantile
i< 0
repeat
ii+to
X, N, +i-g,pu+i-g)forj=1,..,n(sets of
generated random numbers)
D" « value calculated by eq. (9) for each
generated n-tuple
R < number of (D* <k,_, (n))divided by the
number of generated n-tuples

until R <f3
MDA «i
return MDA
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Tomac T'PUCA, Tannen CAC, JIyoomup I'PULL

O BUHIEAUMEH3MUJA/HOJ METOIMU OBPAJE INOJATAKA
3A IIOPTAJI MOHUTOPE 3PAYEIbA

Ca craHoBUIITa HallMOHAJHE O€30€QHOCTH, BAXKHO je OTKPUTH TPAHCHOPT PaJHMOAKTUBHUX
MaTrepujalia Wi MOTEeHIUjaTHy paAuoakTUBHY KOHTaMuHauyjy. Hajuenthe kopuirthenu ypebaju cy nopran
MOHHTOPH 3paveHa ca MIACTHYHIM CHUHTIIAINOHNM ieTeKToprMa. CUrHaII ca TAKBHX AETEKTOpa o6pa-
byje ce aHanmmM3aTOpPOM aMIUTUTY/E KOjU MOXKE Pa3[BOjUTH UMITYJICE Y HEKOJIUKO MehycoOHO He3aBUCHUX
€HepreTcKuX Mpo30pa, KOju NpeAcTaBbajy €HepreTcke MHTepBaje rama 3payewma. 300r Tora je Haj-
IpUKIaJHNja METOAA IPOLICHE YIOTpeOa anroputamMa 3a BUIIeAUMEH31jaIHy 00pajy. Y OBOM pajy ONHcaH
je HOBH yONIITEHU NPHUCTYN OCMUIIJLEH IIPeMa CBOjCTBHMA MOPTAJ MOHHUTOpA 3padecma. Cagp:Ku omnuc
¢opMyJia U o anropuTaM, Kao U NOCTyNak 3a ofipebuBame ofroapajyhux KpUTUUYHUX OrpaHUYEHA U
rpaHuna ferekuuje. Ilpensubena pacnogena BepoBaTHohe 3a NpeJJIoXKeHy METOAY IpopadyyHa Bepu-
¢ukoBaHa je cuMmysanujaMa U eKCIepUMEHTATHUM MepewmuMa. AJIropuTaM je Takobe ynopeben ca yo-
OMYajeHrM aJTOPUTMOM YKYITHOT Gpojama.

Kmwyune pequ: ilopitian MOHUILOP 3payersa, sulleOUMeH3UjaiHa obpada iooatliaka,
KPUIIUYHO 0ZPaHU4erbe, 2panuna oetlieKyuje, CUUHIUAAUUOHU OellleKILop,
AHAAUIATUOD AMUAUITILYOe




