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In this work, the average current nodal expansion method was developed for the time-de-
pendent neutronic simulation of transients in a nuclear reactor's core. For this purpose, an
adopted iterative algorithm was proposed for solving the 3-D time-dependent neutron diffu-
sion equation. In the average current nodal expansion method, the domain of the reactor core
can be modeled by coarse meshes for neutronic calculation associated with reasonable preci-
sion of results. The discretization of time differential terms in the time-dependent equations
was fulfilled, according to the implicit scheme. The proposed strategy was implemented in
some kinetic problems including an infinite slab reactor, TWIGL 2-D seed-blanket reactor,
and 3-D LMW LWR. At first, the steady-state solution was carried out for each test case, and
then, the dynamic neutronic calculation was performed during the time for a specified tran-
sient scenario. Obtained results of static and dynamic solutions were verified in comparison
with well-known references. Results can indicate the ability of the developed calculator to
simulate transients in a nuclear reactor's core.
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INTRODUCTION

The design and safety assessment of new nuclear
systems suggested for future improvement need accu-
rate simulation of the behavior of neutron distribution
during typical operational and accidental conditions
[1]. Generally, two different strategies have been usu-
ally used for obtaining neutron flux distribution in a nu-
clear reactor core including the deterministic methods,
e. g. the nodal method [2], and the probabilistic meth-
ods, e. g. the Monte Carlo method [3, 4]. As the numeri-
cal experiments noted in [5] and others, revealed insuf-
ficient accuracy of the point-reactor model for the
analysis of large thermal light water reactors (LWR) [6],
approximation strategies for solving the space-energy
dependent neutron kinetics equations have been of in-
terest in reactor physics ever since early 1960. How-
ever, one of the methods for predicting the accurate
space-time distribution of neutrons in a nuclear reactor
core is the implicit direct solution of time-dependent
multi-group neutron diffusion equation.

For solving the 3-D kinetics equation, tech-
niques must be considered for space and time
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discretization. Up to now, several methods have been
developed and proposed for the spatial discretization
of the neutron diffusion equation such as finite differ-
ence, finite element, and nodal methods. The space
discretization technique is utilized for calculating the
eigenvalue and also the flux distribution across the re-
actor core. In nodal methods, coarse meshes can be
employed according to sizes of a fuel assembly (FA)
accompanied by retaining tolerable accuracy. Among
the well-known nodal methods, the analytical nodal
method (ANM) [7] and the nodal expansion method
(NEM) [8], should be mentioned. In the ANM, the
neutron diffusion equation is solved analytically but in
the NEM, this equation is solved by defining a polyno-
mial expansion the coefficients of which are deter-
mined in terms of nodal parameters for each node and
energy group. Recently, a steady-state calculation
package has been developed in order to evaluate the
accuracy of NEM sub-methods for the 3-D rectangular
geometry [9]. In addition, results of a static simulator
for the 3-D hexagonal geometry using the average cur-
rent nodal expansion method (ACNEM) have also
been reported [10].

Various strategies have been applied for the time
discretization of the time-dependent neutron diffusion
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equation. Standard methods employ backward differ-
ence formulas [11]. These methods require solving of
alarge system of linear equations at each time step. For
solving these systems, preconditioned iterative meth-
ods are utilized [12]. Other types of methods such as
modal approaches [13], and the quasi-static method
[14], have also been implemented in the nuclear engi-
neering field [15].

For the purpose of this paper, a space-time simu-
lator was developed for analyzing the dynamical
neutronic behavior of a nuclear reactor core, when a
specific transient scheme was considered. In this way, a
sub-method from the zeroth order NEM family, i. e. the
average current approach, was used for the coarse mesh
discretization of space in the coupled 3-D multi-group
diffusion and the delayed neutron emitter concentration
equations. The implicit backward Euler approach was
also employed as the time discretization technique of
noted time-dependent equations. In this work, an
adapted iterative algorithm was proposed for solving
the space-time multi-group neutron diffusion equation
coupled with precursor equations. In this case, a novel
iterative algorithm which had been proposed earlier for
only steady-state calculations of ACNEM [9, 16], was
developed for resolving the time-dependent neutron
diffusion equations. As in each time-step of a transient
simulation, using the fully implicit scheme, numerous
time-consuming calculations should be performed and
the computational cost of space-time solutions is really
huge, the basic version of ACNEM, i. e. the zeroth order
solution, was selected and applied in this work for
discretizing the geometry domain. For evaluating the
proposed methodology, three popular transient
benchmarks were investigated and the obtained results
were compared with the verified references. Results
showed that the developed time-dependent ACNEM
using the proposed iterative algorithm worked suffi-
ciently well in simulating transient problems by coarse
meshes.

AVERAGE CURRENT NODAL
EXPANSION METHOD

Static calculation

The average current method [8, 17], is a NEM
which is used for the steady-state neutronic calcula-
tion of a nuclear reactor core. Lately, this method has
been discussed in some papers such as [9, 16]. That is
why this methodology for 2-D diffusion equation is
briefly presented in this paper.

The static multi-group neutron diffusion equa-
tion is given by the following
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where J, and ¢, are the neutron current and flux in the
location of 7, respectively.

In the ACNEM, a polynomial expansion is con-
sidered for the flux distribution in each node and energy
group. For the zeroth order of ACNEM, the degree of
this polynomial expansion is two which is defined gen-
erally by the following
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where '], is the left (s = )/right (s = r) u-surface of
nodeIT"”, 4, is the area of 'y, ¥y, is the average flux
for group g at F o and CDg is the average flux for group
g in [1"and by solving eq. (3), the expansion coeffi-
cients of A, a4y, and by, noted in eq. (2) are obtained as

the following relation
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Therefore, if ®;" and ¥,,, parameters are speci-
fied, eq. (2) is determined for each node and energy
group. For this purpose, eq. (1) is integrated first over
each node IT” and in the following the 2-D
multi-group neutron continuity equation is derived as
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where jgit, /o are average outgoing (+) and incom-

ing (-) partial currents for group g at I'},, respectively,
and 4,)'is the thickness of node IT" for the u direction.

For resolving eq. (5), additional relations are re-
quired in order to calculate the average surface partial
CUrrents (Jg, » jgu ) For this purpose, the Flick's law
is applied by employing the defined neutron flux, eq.
(2), for each node and energy group. Hence for the sur-
face of 'Y, eq. (6) is obtained as follows
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where e, is a unit vector in the direction of the out-
ward normal to I'};. Also by using the approximation
of the following

Pous =20 gus +Jgus )» s=Lr, u=x,y (7)

gus gus

For both surfaces of I';;and I}, at last, a set of
equations is arrived at in which the outgoing currents
are related to the incoming currents and the average
flux in each node. So the interface current equations

are given by the following

@Wl
-+m m m m 4
.]gul _ Agu Bgu Cgu jfm (8)
. - gul |
Jew | (A Cou Bl m
fgur

m=12 ..M g=12,...G u=xy

where 4y, , By, and Cy, are specified in terms of D'
and A, for the node m and energy group g.

Now if the outgoing currents are eliminated from
eq. (5) by using eq. (8), the final form of nodal balance
equation is as follows
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However, for obtaining the required unknown
nodal parameters, egs. (11) and (12) are solved accom-
panied by utilizing the continuity of interface currents
for neighbor nodes and boundary conditions for exte-

rior nodes. For a boundary surface, '}, the following
relation is used
—m 1_2)“:;145 +m
Jaus = m gus ( 1 0)
1+2 aus

where for reflecting and zero-flux boundary condi-
tions, the /’Lgu is considered by 0 and 1010, respec-
tively.

The power method is also applied for updating
the multiplication factor, k. The aforementioned pro-
cedure is illustrated in fig. 1 as a novel adopted itera-
tive algorithm for static problems [9].

S

Reading input parameters for the problem and setting
the criteria for eigenvalue and flux convergence

Computing output partial currents for
node m and energy group g using eq. (8)

!

Obtaining input partial currents of node
m and energy group g from output partial
currents of neighbor nodes

g=g+1 m=m+1

I

Computing the average flux of node m
and energy group g using eq. (9)

Updating the new eigenvalue

Yes

End

Survying eigenvalue and average
flux convergence criteria

Figure 1. The flowchart of proposed adopted iterative algorithm for static calculation using ACNEM
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For solving the system of nodal equations in
ACNEM, the formal Gauss Seidel algorithm can be
used. But, in some situations, the solution using the
noted algorithm is diverged. According to [16], a
novel adopted iterative algorithm has been proposed
for overbearing the divergence problem of static solu-
tion using ACNEM. In the formal Gauss Seidel ap-
proach, the nodal parameters are updated and inner it-
erations are repeated until the solution is converged
and then, the multiplication factor, kg, is updated. But,
for the proposed approach, in each inner iteration of
Gauss Seidel algorithm, the multiplication factor &g,
is updated by using last nodal parameters and then the
subsequent inner iteration is performed by using the
new k.. By employing this iterative approach, the di-
vergence of the solution does not appear [16]. In this
paper, the noted novel methodology was used and ex-
tended for treating the time-dependent neutron diffu-
sion equations.

Dynamic calculation

In this section, the steady-state strategy men-
tioned in the previous section is extended and devel-
oped for solving the time-dependent diffusion equa-
tions, in order to simulate transient neutronic scenarios
in the reactor core.

The time-dependent form ofeq. (1) is considered
by [18]
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where v, is the neutron velocity for energy group g, 8
is the total fraction of delayed neutrons, y . and y 4,
are the emission spectrum of prompt and delayed neu-
trons for group g, respectively, 4, is the decay constant
of the i ™ delayed neutron family, and c; is the concen-
tration of the i ™ delayed neutron family.

Moreover, the concentrations of delayed neutron
emitters, c; (7, ¢ ), satisfy the following time-dependent
balance equations, which are named the precursor
equations, i. e.
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where f3; is the delayed neutron fraction of the i ™ de-

layed neutron family and 7 is the number of delayed
neutron families [18].

Ifeq. (11) is integrated over the volume of node
m, term by term, the following equation is derived for
time ¢ and energy group g
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In the same way, eq. (12) for the precursor con-
centrations in the node-wise integrated form resulted

as J
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Similar to static treatment, an additional set of
equations is needed for solving time-dependent cou-
pled egs. (13) and (14), i. e.
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Now by eliminating the outgoing currents from
eq. (13) using eq. (15), we have the following
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For discretization of the time differential terms
of egs. (14) and (16), the implicit approach using the
backward Euler method was utilized for the time ¢ by
the following

DT (t)-DT (t—At

%@g(r)z Al A;( _peer an
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where At is the time step, the operators /' and L are the
neutron production and consumption terms of eq. (16)
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and also F" and L' are the precursors of production and
consumption terms of eq. (14), respectively.

Ultimately, the final form of time-dependent
multi-group neutron balance equation, eq. (16), using
eq. (17), is obtained as follows

m m — 1 m
D, (1)=D, (1 -At)+v, . At Zg;i,ryh—m[l—Bgu (t)-
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For the time-dependent equations of delayed
neutron emitter concentration, the final form of eq.
(14) is obtained by using eq. (18) in the following rela-
tion

1
1+ A4,At
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For solving the coupled time-dependent egs.
(19) and (20), an adopted iterative strategy for the
time-dependent calculation of ACNEM was devel-
oped which is demonstrated in fig. 2. In this approach,
the critical parameters of neutron balance equation
were first computed including average fluxes and sur-

Reading input characteristics of the problem and
setting the criteria for parameters of static and
dynamic calculations

:

Obtaining the steady-state results based on the figure 1 for
the initial time step /. e. t=0
(t=(n—1)*At, n =1, At the time step length)

:

Outer iteration: n=n + 1 ”

Performing time dependent calculations for N time steps

:

Making new changes in the macroscopic cross section of
corresponding nodes based on the transient scenario

}

Considering nodal parameters and precursors concentration values of
previous time step as the initial values for the new time step calculation

;

Inner iteration:

Updating the time-dependent parameters using eqs. (14), (18), and (19) for the
new time step using the last values of parameters for all nodes and energy groups
similar to the algorithm dedicated in fig. 1

Evaluating the average flux convergence criteria for all

No nodes and energy groups in the new time step

Printing the converged average fluxes of all nodes and energy
groups for the new time step, t= (n—1)*At

fn-1<N

Yes
No

End

Figure 2. The flowchart of proposed adopted iterative algorithm for dynamic calculation using ACNEM
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face partial currents of all nodes and energy groups
and also precursor's concentrations of all nodes. Then
time-dependent calculations were done for N time
steps of Afr seconds using required parameters
achieved in the previous time step. In each time step,
variations of cross sections are performed, according
to the defined transient scheme in the reactor core. In
addition, an inner iteration was implemented for con-
verging the average fluxes of all nodes and energy
groups similar to the algorithm used in the static calcu-
lation presented in fig. 1. In this inner iteration, param-
eters of the previous time step including the average
fluxes and currents are used as the initial values for the
current time step and computations were repeated em-
ploying egs. (15), (19), and (20) by using the nodal pa-
rameters of last inner iteration. This process was con-
tinued for the current time step until all of acquired
average fluxes converged. Afterward, calculations
were started for the subsequent time step until the end
time of dynamic scenario was finally reached.

NUMERICAL RESULTS

In this section, the results of three transient test
cases including an infinite slab reactor, TWIGL-2-D
seed-blanket reactor and 3-D LMW LWR are given
for both static and dynamic calculations, and also their
results are compared with the reported results in refer-
ences.

Problem 1: An infinite slab reactor

For the first test case, a 1-D reactor was intro-
duced and investigated. This reactor was divided into
three regions. Two outer regions (1 and 3) had 40 cm
stick and also the size of central region (2) was 160 cm.
For this problem, the boundary condition was the zero
flux. The two-group constants of the problem are pre-
sented in tab. 1. In addition, parameters of six groups
of delayed neutrons for the transient analysis of infi-

Table 1. Cross-sections of the infinite slab reactor model

nite slab reactor model are shown in tab. 2 [19]. This
example was solved by 24 coarse nodes having the
size of 10 cm. The effective multiplication factor and
relative regional powers of the static calculation were
compared with the reference in tab. 3. The benchmark
problem book [20], reported the reference solution
which has been obtained by a finite-difference code
with 2 cm meshes. According to relative errors given
in tab. 3, static results indicated an accurate solution in
respect to the reference.

For the dynamic calculation, the transient
scheme was a linear increment of 3 % in the thermal
absorption cross-section for region 1 in 1.0 second.
The dynamic solution was performed by using the de-
veloped time-dependent ACNEM and considering the
time step of 0.01 second. As for fig. 2, the time-de-
pendent calculation has been done step by step for 2
seconds with 200 time steps. The obtained relative to-
tal powers are represented in tab. 4 for selected times
and compared for some times with the reference [20].
The minor diversity of results in comparison with
those in the reference can be seen in tab. 4. The dia-
grams of obtained relative total powers and the refer-
ence along the time are also illustrated in fig. 3.

For this test case, a sensitivity analysis was made
for time step and mesh size parameters. Table 5 gives
some results for various mesh sizes including the CPU
time and the average and maximum relative errors of
time-dependent total powers which were compared
with the reference. Similarly, the CPU time and the av-
erage and maximum relative errors of noted powers
for various time steps are also presented in tab. 6. Us-
ing the developed procedure, it is found that no diver-
gence appeared for various mesh sizes and time steps
in transient calculations. Tables 5 and 6 indicate that
when the mesh sizes and time steps are decreased and
consequently, the CPU time is increased, the accuracy
of time-dependent powers obtained by ACNEM has
not changed considerably. Thus, the calculations for
the following problems were done for coarse meshes
and a time step.

Table 3. Results of the static calculation for infinite
slab reactor model

: Group -1 ‘ -1 -1 -
Region [g] Dy [em] Fog [om ] j0Zgy [om )12 [om ] Parameter ACNEM | Reference ifé?tfgf]
1,3 1 1.50 0.011 0.010 0.015 ke 090090 | 0.90155 2007
2 0.50 0.180 0.200 Relative power of reg.1* | 0.829 0.837 -0.91
2 ! 1.00 0.010 0.005 0.010 Relative power of reg.2” | 1.341 1.326 1.15
2 | 050 | 0080 | 009 Relative power of reg.3* | 0829 | 0837 | —091
—10.107 - 20105 -1
v =1.0-10"cms ™, v, =3.0-10" cms * Relative power (normalized to the average value of
regional powers)
Table 2. Parameters of delayed neutrons for the infinite slab reactor model
Parameter d=1 d=2 d=3 d=4 d=5 d=6
B 0.00025 0.00164 0.00147 0.00296 0.00086 0.00032
Ad 0.0124 0.0305 0.1110 0.3010 1.1400 3.0100
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Table 4. Relative total power vs. time for infinite
slab reactor model

Table 7. Characteristics of TWIGL SEED-BLANKET-
2-D reactor problem

*Mesh size: 10 cm, time step length: 102 s

1.00

0.95]

0.907

Relative total power
o
2]
o

0.80 \
0.75

0.70

0.65 1

0.60 .
0.00 025 0.50 075 100 125 150 175 200
Time [s]

Figure 3. Relative total power vs. time for the infinite slab
reactor

Table 5. Results of various mesh sizes for infinite slab
reactor model

Mesh size | CPU Average Maximal
[cm] time [s]*| relative error, [%] | relative error, [%]

2.5 410 0.10 0.19
5 70 0.12 0.21
10 12 0.22 0.32

*with laptop corei5, 2.4 HGz

Table 6. Results of various time steps for infinite slab
reactor model

Time step [s] CPU Average Maximal
P time [s] | relative error, [%]|relative error, [%]
10 3 0.23 030
10° 12 0.22 0.32
107 60 023 031

*with laptop corei5, 2.4 HGz

Problem 2: TWIGL seed-blanket reactor

This test case is a 2-D model of a 160 cm square
un-reflected seed-blanket reactor. The problem was
defined with two neutron energy groups and eighth
symmetry of the core. At first, transient solutions were
obtained by [21] and surveyed in documents such as
[7, 19]. For this transient problem, all of required
neutronic data are given in tab. 7 and the geometry is
also exhibited in fig. 4 [19].

Time [s ACNEM?® | Reference | Relative error [% . v
0.00[] 1.000 1.000 - = Region |Group, g| Dy [em] |Zag [em ] | [opy [il{j]
0.10 0.931 0.930 0.087 13 1 1.4 0.01 0.007 | 0.01
0.20 0.875 0.873 0.209 2 0.4 0.15 0.2
0.30 0.830 - - 2 1 1.3 0.008 | 0.003 | 0.01
0.40 0.793 - - 2 0.5 0.05 0.06
0.50 0.762 0.760 0.235 v =1.0-107 ems ™, v, = 2.0-10° cms ™', B = 0.0075, 4 = 0.08
0.60 0.735 - -
0.70 0.713 - - - 44=0
0.80 0.693 - - 5. /
0.90 0.676 - -
1.00 0.661 0.659 0.266 3
1.50 0.645 0.643 0.321
2.00 0.632 0.631 0.224 56.

%_/ 2 1 4,=0
L/

ax

X [cm]

0. 2 il 56. 80.

r?y=

Figure 4. Quadrant of TWIGL seed-blanket reactor
geometry

The static solution of ACNEM was fulfilled by
using 8 cm x 8 cm meshes and its results and relative
errors in comparison to reference are represented in
tab. 8. The reference is the second order calculation of
ACNEM reported in [19]. The comparison of data
noted in tab. 8, confirms the true static solution of ap-
plied ACNEM.

For this problem, two transients were initiated in
region 1 by decreasing the thermal absorption cross sec-
tion including the step perturbation as the following

Ay, =-0.0035cm ™", t=0 1)
and the ramp perturbation in 0.2 second which follows

[19]
2, (0)(1-011667¢), <02
2o, (=95 " 0)(097666) t>02 (22)
iy ’
These transients were simulated by using the

proposed ACNEM for 0.5 seconds by the time step
length of 0.01 seconds for both perturbations. Thus the

Table 8. Static results for TWIGL SEED-BLANKET-2-D
reactor problem

Maximal Average
P kg relative power power
off error [%)] | relative error | relative
[%] error [%]
ACNEM |0.91276| —0.046 4.69 1.68

* keir (reference): 0.91318
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dynamic calculation was carried out for 50 time steps.
According to Christensen [19], the reference for both
transkeff Relative Error %ients is the results of the
QUANDRY code.

After exerting the step perturbation in region 1
of the reactor core, in respect to eq. (21), results were
obtained step by step during the time. Relative average
powers in the reactor vs. time dedicated to the time-de-
pendent ACNEM, are compared with the reference in
tab. 9. Moreover, values of relative average power cal-
culated by the developed simulator and the reference
against the time are illustrated in fig. 5.

For ramp perturbation, the transient was mod-
eled during the time according to eq. (22). Achieved
relative average powers and theirs relative errors as for
the reference are presented in tab. 10 for some times.
In addition, calculated relative average powers and the
reference vs. the time for ramp perturbation are shown
in fig. 6.

Relative errors of powers given in tabs. 9 and 10
show that the proposed approach has an efficient perfor-
mance in time-dependent modeling of perturbations.
Furthermore, from figs. 5 and 6, one can see the different
forms of power enhancement vs. time. This case comes
from the variant natures of implemented perturbations.

Table 9. Relative average power vs. time for step
perturbation of TWIGL SEED-BLANKET-2-D reactor
problem

Time [s] ACNEM * | Reference |Relative error [%)]
0.00 1.000 1.000 -
0.05 2.008 - -
0.10 2.050 2.061 —0.549
0.15 2.059 - -
0.20 2.068 2.078 —0.489
0.25 2.076 - -
0.30 2.085 2.095 —0.479
0.35 2.094 - -
0.40 2.102 2.113 —0.510
0.45 2.109 - -
0.50 2.120 2.131 —0.533

“Time step length: 107 s

Relative average power
-
o
.

0 005 01 015 02 025 03 035 04 045 05
Time [s]

Figure 5. Relative average power vs. time for the step
perturbation of TWIGL seed-blanket reactor

Table 10. Relative average power vs. time for ramp
perturbation of TWIGL SEED-BLANKET-2-D reactor
problem

Time [s] | ACNEM*® | Reference Relative error [%]
0.00 1.000 1.000 -
0.05 1.124 - -
0.10 1.307 1.307 0.019
0.15 1.565 - -
0.20 1.955 1.957 —0.107
0.25 2.054 - -
0.30 2.065 2.074 -0.412
0.35 2.074 — —
0.40 2.083 2.09 —0.446
0.45 2.091 - -
0.50 2.100 2.109 —0.430

* Time step length: 107 s

22

2.0 /
1.8

Relative average power
-
Py z

1.0

0O 005 01 015 02 025 03 035 04 045 0S5
Time [s]

Figure 6. Relative average power vs. time for the ramp
perturbation of TWIGL seed-blanket reactor

In the step transient, the power increase quickly occurred
during the small time distance i. e. 0 <7< 0.05, similar to
the prompt jump response which occurs due to inducing
a step reactivity in the system. Also, the nearly linear en-
hancement of power is seen in fig. 6 for the ramp tran-
sient due to the linear decrease of the thermal absorption
cross section during 0 < ¢ < 0.2. Therefore, these cases
can prove the proper effect of developed kinetics simula-
tor for this problem.

Problem 3: LMW LWR-3-D

As the third test case, a 3-D reactor core called
the LMW (Langenbuch-Maurer-Warner) problem
was modeled. This reactor has a two-zone core con-
taining 77 fuel assemblies with widths of 20 cm. The
core is reflected by 20 cm of water both radially and
axially, and the height of the active core is 160 cm. Ra-
dial and axial views of the core for LMW LWR-3-D
are indicated in figs. 7 and 8, respectively. In addition,
the neutronic parameters and also constants for de-
layed neutrons belonged to LMW LWR-3-D are given
in tabs. 11 and 12, respectively [7]. The defined tran-
sient for this problem is the movement of two groups
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Table 11. Cross-sections of LMW LWR-3-D problem
Region | Group, g D, [em] g [em '] vZg [em ] % [em']
1 1 1.423913 0.01040206 0.006477691 0.0175555
2 0.356306 0.08766217 0.1127328
2 1 1.423913 0.01095206 0.006477691 0.0175555
2 0.356306 0.08766217 0.1127328
3 1 1.425611 0.01099263 0.007503284 0.01717768
2 0.350574 0.09925634 0.1378004
4 1 1.634227 0.002660573 0.0 0.02759693
2 0.264002 0.04936351 0.0

v =1.2510" cms™, v, =2.5-10° cms ™!



K. Valavi, et al.: Three-Dimensional Time-Dependent Neutron Diffusion ...
198 Nuclear Technology & Radiation Protection: Year 2020, Vol. 35, No. 3, pp. 189-200

Table 12. Parameters of delayed neutrons for the LMW LWR-3-D

Parameter d=1 d=2 d=4 d=5 d=6
B 0.000247 0.0013845 0.001222 0.0026455 0.000832 0.000169
Ad 0.0127 0.0317 0.311 1.40 3.87

control rods in which the initial and final positions of
them are specified in fig. 8.

For the steady-state calculation, the control rod
group | was located in the initial position as shown in
fig. 8. The static solution was fulfilled by using the de-
veloped ACNEM for the quarter symmetry of LMW
LWR-3-D. The modeling was performed by utilizing
coarse meshes having sizes of the FA, i. e. the width of
20 c¢m in all of the 3-D. Moreover, the reference solu-
tion is the results of QUANDRY code [7]. Static pa-
rameters containing the effective multiplication factor
and its relative error, the maximum and average of
power errors for fuel assemblies in comparison to the
reference are presented in tab. 13. According to the re-
sults, a good agreement between the calculated results
and the reference can be observed.

For the time-dependent calculation, a perturba-
tion program is implemented as follows [7]

{Removing rod group 1 at 3.0cms ' 0<1<26666s
Inserting rod group 2 at 3.0cms™'; 7.5<1<475s
(23)

According to fig. 2, the transient solution was ac-
complished for 60 seconds step by step with the time

Table 13. Static results for LMW LWR-3-D
reactor problem

. Maximal | Average
power power
relative relative
error [%] | error [%]

1.00058| 0.091 4.02 1.65
* kegr (reference): 0.99966

a .
kst relative

ACNEM exror [%]

Table 14. Relative average power versus time for LMW
LWR-3-D problem

Time [s] | ACNEM® | Reference | Relative error [%]
0 1.000 1.000 -
5 1.131 1.114 1.53
10 1.341 1.313 2.16
15 1.559 - -
20 1.652 1.669 —1.03
25 1.537 - -
30 1.275 1.340 —4.89
35 0.990 — —
40 0.752 0.793 =5.11
45 0.580 - -
50 0.482 0.494 -2.36
55 0.421 - -
60 0.374 0.379 -1.23

*Time step length: 0.8 s

step length of 0.8 seconds. For this purpose, the
time-dependent two-energy group neutron diffusion
equations coupled with six groups delayed neutron
equations were solved by launching corresponding
changes of cross-sections according to the program of
control rods movements noted in eq. (23). Obtained rel-
ative average powers in the core for some time steps
were compared with the reference [7], in tab. 14. As dis-
played in tab. 14, a suitable accuracy of developed
time-dependent ACNEM is distinguished relative to
the reference. Consequently, according to the results,
the proposed approach can be reliable for careful simu-
lating of the transient sketches in nuclear reactors. In re-
spect to eq. (23), the schematic diagrams of relative av-
erage power changes gained by the applied method and
the reference against time are also depicted in fig. 9.

CONCLUSION AND OUTLOOK

The aim of this work was to develop a 3-D
time-dependent simulator for solving transient
problems of nuclear reactor cores based on the aver-
age current nodal expansion method (ACNEM). For
this purpose, an adapted iterative algorithm was
proposed for solving coupled time-dependent neu-
tron diffusion equations. In this iterative strategy, an
inner iteration was considered based on the novel al-
gorithm used in the steady-state treatment. Three
transient test cases were simulated by using coarse
meshes of sizes of FA for validating the developed
approach. Numerical results of both static and dy-
namic calculations using the time-dependent
ACNEM were compared and benchmarked with re-
ported results in references. According to the re-

=
@

N
'\
//

=
//

Relative average power
-
ks o i 2 =

0.2

0 10 20 30 40 50 60
Time [s]

Figure 9. Relative average power versus time for the
LMW LWR-3D
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sults, the developed simulator can accurately solve
transient problems in a nuclear reactor's core. Fur-
thermore, it was found that when using the devel-
oped iteration algorithm, no divergence appeared
neither in static nor in transient calculations.
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Kamon3z BAJTABU, Ann ITABUPAHIEX, IN'onampeza JAXAH®APHUJA

TPOOUMEH3NOHA/IHA BPEMEHCKU 3ABUCHA CUMYJIAIIMJA
HEYTPOHCKE JU®Y3UJE TIPUMEHOM HOJAJ/JIHE METOIE CA
PA3BOJEM CPEIBE CTPYJE HEYTPOHA Y PE[

3a BpeMEHCKU 3aBUCHY HEYTPOHCKY CUMYJIallijy IpeJla3HUX 110jaBa y je3rpy HyKJIeapHOT peak-
TOpa pa3BHjeHa je HOfallHA METOJa ca Pa3BOjeM CPelilbe CTPYje HEYTPOHA Y pefi. Y Ty CBPXY, YCBOjEH je
UTEpAaTUBHU aJrOpUTaM 3a pellaBambe TPOAUMEH3MOHAJIHE BPEMEHCKU 3aBUCHE jefHauuHe nudysuje
HeyTpoHa. ITo 0Boj HOflaIHOj MeTofH, O0MACT je3rpa peakTopa MOXKe Ce MOAEIOBAaTH IPyOUM MpexKaMa 3a
HEYTPOHCKHU IPOPAuyH IOBE3aH ca yMepeHoM npeduusHouthy pesynrara. [IpemMa UMIIUIUTHO] gude-
PEHIMjaTHOj IEeMH, Y BPEMEHCKU 3aBUCHUM jefHaUMHaMa U3BpIICHA je JUCKpEeTH3alyja WiaHoBa fude-
peHuyjanHux no spemeny. Ilpennoxena crpaTeruja IpUMEmHEHA j€ Y HEKUM KUHETHYKUM IIPOOJIeMUMA,
yKJbyuyjyhu peakTop y Buly OecCKOHauHe 1mi1o4e, ApoguMen3noHannn TWIGL peakTop ca npekpuBadeM u
Tponumen3unonanau LMW LWR peakrop. Hajnpe je ogpebeHo peniemwe y craimoHapHOM CTamy 3a CBaKu
TeCT ciydvaj, a 3aTUM j€ U3BpLICH AMHAMMYKHM HEYTPOHCKU NPOPAUyH TOKOM OfijpeheHOr BpeMeHa 3a
crnenuUyUHU CLEHApUO Ipeja3Hor cTama. [1oOujeHHM pe3yiaTaTH CTaTUYKHUX U JUHAMUYKUX pelleka
BepU(UKOBaHH Cy NopebemeM ca MO3HATUM peepeHTHUM BpefHOocTUMA. PesynaTaTu ykasyjy Ha Mo-
ryhHOCT pa3BHjeHOr IOCTYNKa IPOPayuyHa fja CUMYJIupa [Ipela3He [0jaBe y je3rpy HyKJleapHOr peakTopa.

Kmwyune peuu: HoOaana mettiooa, Clipyja HeYpoHa, Zpyoba mpexca, Ougy3uora jeOHaquna,
iUpasoyzaona 2eomeiipuja, BPeMeHCcKU 3a8UCAH UPOPAUYH, CUMYAAUUJA UPEAASHUX CIlarba




