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This work addresses the problem of propagating uncertainty from group-wise neutron
cross-sections to the results of neutronics diffusion calculations. Automatic differentiation
based on dual number arithmetic was applied to uncertainty propagation in the framework of
local sensitivity analysis. As an illustration, we consider a two-group diffusion problem in an
infinite medium, which has a solution in a closed form. We employ automatic differentiation
in conjunction with the sandwich formula for uncertainty propagation in three ways. Firstly,
by evaluating the analytical expression for the multiplication factor using dual number arith-
metic. Then, by solving the diffusion problem with the power iteration algorithm and the al-
gebra of dual matrices. Finally, automatic differentiation is used to calculate the partial deriv-
atives of the production and loss operators in the perturbation formula from the adjoint-
weighted technique. The numerical solution of the diffusion problem is verified against the
analytical formulas and the results of the uncertainty calculations are compared with those
from the global sensitivity analysis approach. The uncertainty values obtained in this work

differ from values given in the literature by less than 1-10-5.
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INTRODUCTION

Sensitivity and uncertainty analysis has become
an important topic in nuclear reactor modelling. Un-
certainty analysis methods are employed to quantify
the effect that the uncertainties in the model input have
on the uncertainty of the model output (propagate the
uncertainty). Sensitivity analysis is used to study how
the uncertainty in the output of a mathematical model
can be allocated to different sources of uncertainty in
its inputs. Sensitivity and uncertainty analysis meth-
ods can be collected into two families, referred to as lo-
cal and global sensitivity analyses. Local sensitivity
analysis methods (the focus of this work) allow one to
examine the behaviour of the model output in the vi-
cinity of a chosen point (point of interest). Global sen-
sitivity analysis methods allow one to explore the full
phase-space of input parameters, and to take the
nonlinearity of the model into account. More detail on
sensitivity and uncertainty analysis and their applica-
tion can be found, for instance in [1].

* Corresponding author; e-mail: pavel.bokov(@necsa.co.za

Uncertainty propagation in nuclear reactor cal-
culations is typically done using sampling methods or
perturbation theory. In sampling methods, a large
number of cross-section sets (or libraries) are con-
structed by sampling from an underlying set of
cross-sections and their uncertainties. Calculations are
run with all these libraries, and statistical analysis can
be performed on the complete set of output parameters
obtained. Examples of reactor simulation codes that
use this approach are XSUSA [2] and Sampler [3]. The
perturbation theory approach involves solving a gen-
eralized adjoint equation for each response of interest,
to calculate sensitivity coefficients. Uncertainty in re-
sponses can then be calculated using the so-called
sandwich formula. Examples of codes that use this ap-
proach are TSUNAMI [4] and CASMO-4 [5]. These
two methods are widely published and not further dis-
cussed in this work.

We discuss an alternative approach to uncer-
tainty propagation, based on dual number automatic
differentiation and the sandwich formula. Automatic
differentiation provides a means for the accurate eval-
uation of function derivatives in numerical calcula-
tions [6-8] by exploiting the fact that derivatives of a
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function can be calculated via elementary arithmetic
operations (addition, subtraction, multiplication, divi-
sion) and elementary functions (exp, log, sin, cos, efc.)
by applying the chain rule repeatedly to these opera-
tions [8]. Automatic differentiation requires a small
factor more arithmetic operations than an alternative
approach, such as finite difference or symbolic differ-
entiation, and is accurate to working precision [9, 10].

In this work, dual number arithmetic is used to
implement automatic differentiation. There have been
a limited number of papers on the application of auto-
matic differentiation in nuclear engineering, [11-14],
and this work is intended to illustrate some relevant
concepts, whereas a more detailed description of auto-
matic differentiation can be found, for instance in [13,
and references therein].

A common source of uncertainty in reactor calcu-
lations is the basic nuclear data libraries and the experi-
mental and modelling uncertainties that they inherently
carry [15]. To explore the possibility of employing dual
number automatic differentiation for uncertainty propa-
gation in reactor calculations, we study the propagation
of uncertainty from broad-group neutron cross-sections
to the results of neutronics diffusion calculations. In par-
ticular, we will calculate the uncertainty in neutron multi-
plication factor caused by the uncertainty in broad -group
cross-section data.

We demonstrate the approach with a pre-homog-
enized BWR fuel assembly in two broad energy
groups with reflective boundary conditions and as-
sume that cross-section uncertainties have already
been propagated through a lattice calculation to the
homogeneous broad-group cross-sections. The two-
group diffusion problem in infinite medium has a solu-
tion in a closed form, that can be used for verification
of results obtained with the automatic differentiation,
and is a good example on which to demonstrate the
concepts involved. Uncertainty propagation results
for this problem have been published and can be used
for verification [16, 17].

THEORY

In this section dual number arithmetic is described
and automatic differentiation within this method is dis-
cussed.

Dual number arithmetic

Dual numbers are an extension of real numbers
by a second component called the dual part. A dual
number can be represented in the form [18, 9]

X=x+&X (1)

where x and X are both real numbers and ¢ — the dual
unit. The dual unit is analogous to the imaginary unit,

i*=—1, used in complex number arithmetic but defined
as&" =0for n > 2. Numbers x and X are referred to as
the real (or primal) and dual parts of X, respectively.
Dual number arithmetic is described with ordinary
arithmetic on the primal component and first-order
differentiation arithmetic on the dual part. Thus, the
basic arithmetic operations are defined as [18]

Xt y=(x+exX)x(y+ey)=(x+y)te(x+y) (2)

2y=(x+ex)(y+&y)=xy+e(Xy+xy) 3)

2 x+ex [(x) exy—-xy
A=~=”+”2,y),<y¢ 0 @
y o oytey \y y
Functions of dual numbers are introduced via the
corresponding Taylor series expansions
o (n) ~n_n
flx+ex)=Y ST )X

n=0 n '

)

in which all second-order and higher-order terms van-
ish because ¢”" =0 for n > 2 by the definition, thus
yielding

flx+ex)= f(x)+ f'(x)xXe (6)

As one may observe, the result on the right-hand
side of eq. (6) is a dual number, therefore the dual val-
ued function f(%)= f(x)+&xf"(x) may be associated
with it. Applying eq. (6) to analytic functions provides
expressions for the corresponding functions in dual
arithmetic. For example, the cosine of a dual argument
is defined and evaluated in the following way:
cos (X)=cos (x)—&x sin (x). Anon-comprehensive list
of standard analytic functions of a dual number argu-
ment can be found in [9, 10].

Equation (6) can be extended to functions of sev-
eral variables. Recall that for a function /4 of a vector
argument, X, the first two terms of the Taylor series ex-
pansion in the vicinity of x = x,, are

h(x) = h(x)+Vh(Xg)- (X=X, ) (7

Therefore, a function / of a dual vector argu-
ment, X =x+Xg, is given by

h(X)=h(x)+Vh(x)-X¢e (8)

where the dual part contains the derivative of the func-
tion in the direction of the vector X.

In some applications, one may need to solve a
linear problem involving dual numbers. A dual ver-
sion of basic operations and algorithms of linear alge-
bra exists [18, 9, 10], and those that are used in this
study are briefly introduced in the paragraphs that fol-
low.

A dual matrix A is a matrix whose components
are dual numbers. It can be splitinto a real part Aand a
dual part A such that

A=A+cA )
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The sum and the difference of two dual matrices
are therefore given by

A+B=A+B+g(A+B) (10)
and the product of two dual matrices is defined as
AB=AB+s(AB+AB) (11)

The inverse of a dual matrix (under the conven-
tion A'A =1+ €0, where I and O are the real-valued
identity and null matrices, respectively) can be calcu-
lated in the following way

AT=AT-cAtAA™! (12)

The norm of dual number vectors is given by

Tx (13)

&, =v&

The determinant, the pseudoinverse, the QR-,

Cholesky- and singular value decompositions of a

dual matrix, solution of a system of dual linear equa-

tions, eigenvalues, and eigenvectors of a dual matrix

all are defined and details about them can be found in
[18,9, 10].

Automatic differentiation with
dual number arithmetic

It was already mentioned that dual numbers can
be used for automatic differentiation. As per eq. (6),
the automatic differentiation of a function fatx € Ris
performed by evaluating f(x+ X & )using dual number
arithmetic and choosing X =1

fx+e)=fx)+ e/ (x) (14)

From eq. (14) we note that the real part of f(x +¢&)
contains the function value at x, and the dual part con-
tains the first derivative of the function, also evaluated
at x. The same holds for a multivariate function. The i
component of V/(x)atx e R" is obtained by evaluat-
ing f(x+e; €), where e; is the unit vector in the coordi-
nate direction x;

f(x+el-6):f(x)+ﬂel-g (15)
ox:

1

We note here that calculation of all components
of the gradient vector requires # function evaluations,
however, in many applications only a directional de-
rivative is required and not the gradient, hence only
one function evaluation is needed. Furthermore, auto-
matic differentiation using dual number arithmetic
leads to no truncation error and no cancellation error as
compared to the finite-difference approach [6]. Dual
number automatic differentiation corresponds to the
so-called forward accumulation (or forward mode) au-
tomatic differentiation [8, 13].

In summary, we see that automatic differentia-
tion provides a means for an accurate evaluation of
function derivatives in numerical calculations.

UNCERTAINTY PROPAGATION
THROUGH AUTOMATIC
DIFFERENTIATION

It is rapidly becoming the norm to use the best es-
timate plus uncertainty calculations for nuclear reactor
analysis. Sensitivity and uncertainty analysis can pro-
vide useful information on the accuracy and robustness
of a model or experimental measurement. There are
several methods for sensitivity and uncertainty analy-
sis. This section focuses on the application of dual num-
ber automatic differentiation to uncertainty propagation
in the framework of local sensitivity analysis.

Uncertainty propagation in the
context of local sensitivity analysis

Consider a mathematical model described by a
function R” - R
Y= y(x) = (x50, ) (16)

and let xo = (xo1. . ., X0.n) be a specific point of interest.
Linearising the response in the vicinity of x, yields

Y= y(xg)+ 3

i=1 OX;

(x; =x0,;)  (17)

X=X

where the partial derivative of the response y with re-
spect to the input x; (where i = 1, ..., n)

(18)

can be interpreted as the mathematical definition of the
sensitivity of y with respect to x; at X,. By collecting sensi-
tivities s; to a sensitivity vector, s =Vy(Xo ) = (8 ,...,8, )
eq. (17) can be written in a vector form

(X)) = p(x )+ V(X ) (X—X( ) =
=y(Xg)+s-(x—X;)

Now, let us assume that x is arandom vector with
aknownmean, p = E [x] = (u,...,1,), and uncertainty
described by the covariance matrix C = E [(x —p)(x —
— )", where the symbol 7~ denotes the matrix trans-
pose. The uncertainty of the response is characterized
by its variance and can be computed for the linearised
response by applying the so-called sandwich rule 1]

var[ y]=s’Cs (20)
In practice, one can assume that the covariance

matrix C is given, and the challenge is to calculate the
sensitivity vector s.

(19)

Application of dual number
automatic differentiation

We will use dual number arithmetic to calculate
the uncertainty of function y. Consider, as before, a
function (given analytically or as a computational al-
gorithm)
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y=J(x) €2y

Explicit use of sandwich formula. The simplest,
and most straightforward approach to uncertainty
propagation would be to first calculate all the compo-
nents of the sensitivity vector, s;, by applying eq. (15) n
times. The uncertainty is then obtained via the matrix
multiplication in the sandwich formula, eq. (20). This
approach requires, therefore, n evaluations of dual-
valued function f(X), as well as one matrix-vector and
one vector-vector multiplication.

Implicit use of sandwich formula. Alternatively,
one may observe that in eq. (20) the dot product of the
sensitivity vector with any row of the covariance ma-
trix (or column, due to the symmetry of covariance
matrices) is the derivative in the direction defined by
this row (or column). Let ¢; be the i" row of the
covariance matrix of inputs, C, where i = 1,...,n. We
use the dual number arithmetic to evaluate » auxiliary
quantities at given X,

2= f(xo+&¢] ) (22)
with the primal and dual parts given by

z; = f(xp) and Z; =¢; -Vf(x,) (23)

respectively. After n steps we obtain Z =Cs as the dual
part of the auxiliary vector Z. As the final step, we cal-
culate

V=[x +¢1) (24)

in which the function value, y (xo), is given by the real
part of the result, and uncertainty is given by its dual
part

y=f(x,) and var[ y] = y=s"Z (25)

This approach requires (n + 1) evaluations of
dual-function f(X)for the uncertainty propagation. It
will be employed in our study, even though it is not the
usual way of utilizing the sandwich formula.

APPLICATION TO THE MULTI-GROUP
DIFFUSION EQUATION

When propagating uncertainties to a full core
diffusion solution, two problems need to be solved.
The first is the multi-group diffusion equation itself,
and the second is the propagation of uncertainties to
this solution.

In the special case of an infinite two-group reac-
tor, the diffusion equation has an analytical solution.
The two-group steady-state diffusion problem in an
infinite medium can be formulated as

Zal +ZSHZ 0 ¢1 _
_Zsl_,2 Za2 ¢2 -

_ Lvxg vy |4 (26)
el o o ¢

Ineq. (26), we assume no fission neutrons in the
thermal group (y; = 1, y, = 0) and no up-scattering
(ZSH =0). Under these assumptions, the well-known
analytical solution to this problem is [19, 20]

vZf1
o = ——+
Zal +ZSI~>2
Vztz ZSHZ ¢ _ Zaz ¢
Zaz (Zal SHz ), L ZSHZ ’ (27)

Similarly, the solution of the adjoint problem can
be obtained in a closed form

kL =k,
Fo_ 1 VZfl zaz T (28)
¢1 - Zal +ZSH2 |: VZfz +ZSH2 :|¢2

Iterative numerical algorithms may be required
in more complicated cases, such as problems with
more than two energy groups, as discussed in [13].

We select the two-group diffusion problem, eq. (26),
as our test problem and the multiplication factor, k., as our
response of interest. Our objective is, therefore, to propa-
gate the uncertainties in the cross-section values to £,, for
few-group diffusion calculations.

Three variants of uncertainty propagation will
be explored, and will be discussed in the rest of this
section in the following order:

—  For the closed-form analytical solution of the prob-
lem, dual number arithmetic is used to evaluate both
the function and the uncertainty in the solution.

— Solving the problem with the power iteration al-
gorithm. The algebra of dual matrices is employed
in this process.

— Solving the problem with the adjoint-weighted
technique. Automatic differentiation is used to fa-
cilitate the calculation of the partial derivatives in
the perturbation formula.

Equations (27) and (28) will be evaluated using
conventional real number arithmetic to obtain refer-
ence values of the multiplication factor and the group-
wise forward and adjoint fluxes.

Uncertainty propagation applied
to the analytical formula

Since data for the capture and fission cross-sec-
tions are often provided separately, we make the sub-
stitution 2., =X, +X (where g = 1,2 are energy
group 1nd1ces) into egs. (26) (28). The analytical ex-
pression for & in eq. (27) can then be written as a func-
tion of a vector argument

fx)=—5 4
X +X3+x5 (29)
XgX7

(xp +x4 )(x; +x3 +x7)
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where the newly introduced independent variables x;
withi=1,2, ...,7 represent the macroscopic cross-sec-
tions in the following order: x| — the fast capture, x, —
the thermal capture, x; — the fast fission, x, — the ther-
mal fission, x5 — the fast neutron production, x4 — the
thermal neutron production, and x; — the fast removal.
One may also observe that the function in eq. (29) is
mildly non-linear. If uncertainty information is avail-
able for the input variables, the procedure described in
the previous section may be applied directly to eq. (29)
to calculate the uncertainty in the output quantities.

The power iteration method

For an arbitrary number of energy groups, G, the
analytical solution of the diffusion problem may not be
available, and one looks for a numerical solution of the
eigenvalue problem. The power iteration method is a
standard method used in nuclear reactor criticality cal-
culations. Although its description may be found in the
nuclear engineering textbooks (for instance, in [19-
21]), we summarize it here for the sake of demonstrat-
ing its link with the algebra of dual matrices, as em-
ployed in our study. To this end, let us present the
multi-group neutron diffusion equation in matrix form

M® :% F® (30)
where the standard multi-group neutron diffusion no-
tations are utilized: the flux @ vector contains group
fluxes as its components; M — the migration and loss
operator (in an infinite medium it reduces to a matrix
M=Y, ->!, where X, is a diagonal matrix contain-
ing group-wise total cross-sections and X — the scat-
tering matrix), and F is the fission operator, defined as
F=y(vX; )", where y and vZ; are column matrices
containing the fission spectrum and group-wise
nu-fission cross-sections, respectively. The adjoint
problem is defined as

M’ = iT F @' (31)
k

where for the problem considered in this study, M =
=M. The multi-group diffusion equation in an infi-
nite medium can be presented in the form of the stan-
dard eigenproblem of linear algebra. By introducing
the so-called fission source, v = F®, one obtains the
eigenvalue problem

Av=A1v (32)
where A=FM " and A = k. The adjoint problem can be
presented in a similar way

ATV =aTv (33)

where AT = FT (M7, see [20].

We assume that matrix A has a unique largest
eigenvalue, A, which means that|2, | >[4, | >--->|15| > 0.

A numerical solution for the largest eigenvalue and a corre-
sponding eigenvector, v;, can be found by using the power
iteration, given in Algorithm 1, the numerical stability of
which is enhanced by ensuring that vector vfz) (where /7 is
the iteration index) is always of unit length [22]. Once the
eigenvalue problems (32) and (33) are solved, the
multi-group flux is calculated based on egs. (30) and (31) as

(I):lM_IVl and @' =—1(M_1)T Vi (34
A A
respectively, where /l%1 =1,.

Algorithm 1. The enhanced power iteration [22]

Initialize v\* with an arbitrary vector such that H v H =1
fork=12, ... do ?

w=Av‘™D

v =w/w,
20 :[V(f)]T Ay
end for

One can observe from eq. (34) and Algorithm 1,
that the solution procedure involves dual matrix and
scalar multiplications, additions (subtractions), and
inversion of dual matrices, which can be calculated us-
ing egs. (10) to (12).

The perturbation method

Another typical approach to sensitivity analysis
is the Adjoint-Weighted Technique [23, 24]. In this ap-
proach, the uncertainty of the response is still calcu-
lated by the sandwich rule, eq. (20), and sensitivities
are calculated by applying formulas from the perturba-
tion theory. For instance, the sensitivity of the neutron
multiplication factor, k, with respect to a cross-section,
x,, is given by

Ok
Si = =
ox;
i M _1 0F |y
ox; k Ox;
== (33)

<<1>T b F(I)>
kz

where the brackets indicate integration (summation) over
space and energy. The partial derivatives in eq. (35) still
have to be evaluated in some way. To this end, we again
use the automatic differentiation based on dual number
arithmetic. Therefore, if 7 stochastic variables are in-
volved in the definition of migration and loss operator, M,
and fission operator, F, these operators have to be evalu-
ated for i = 1,..., n and that is achieved by applying eq.

(15).

RESULTS AND DISCUSSION

This section describes the numerical example
and analysis of the results.
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Description of the numerical example

The three described approaches will be illus-
trated with a simple example problem, in this case, a
pre-homogenized fuel assembly with cross-sections in
two broad energy groups and reflective boundary con-
ditions. Parameter values were taken from [16, 17],
where relevant uncertainty data is also provided. The
selection of this example can be supported by the fol-
lowing considerations. First, its local sensitivity anal-
ysis solution can be obtained analytically. Second, the
uncertainty propagation problem has been solved in
the aforementioned references by applying the global
sensitivity analysis methods. It is of interest to com-
pare results obtained in these works to those obtained
in this study.

We group, as before in eq. (29), the relevant
cross-sections into a vector in the order

X:[ch Z“‘32 Zf1 Zfz vzfl vzfz ZSHZ ]T (36)

The test problem depends, therefore, on seven
stochastic quantities (inputs). Their mean values are

p=10"2x
x[0.5336 2.693 0.19124 2.8438 0.4920 6.929 2.063]T
(37

and the covariance matrix is

analytical dual function evaluation and dual power it-
eration solution), as well as in the perturbation
formula, eq. (35).

Dual number calculations for the diffusion solu-
tion, as well as uncertainty propagation based on dual
number automatic differentiation, were implemented in
the high-level, high-performance, dynamic program-
ming language Julia [25]. For dual number algebra, we
used the DualNumbers Julia module, and for dual matrix
operations, we employed the DualMatrixTools Julia
module [26]. The analytical solution with dual number
arithmetic and the dual algebra power iteration solution
both produce the same values for k., @ and @', to within
working precision (x2-1071°), as compared to the refer-
ence.

All three approaches yield the same result for the
uncertainty up to the 6" significant figure, and the re-
sults are summarized in the first three rows of the tab. 1.
The uncertainty is reported in two ways. Firstly, for the
sake of comparison with results from the literature, in
terms of the standard deviation of the multiplication
factor, o, =./var[k]. The second way is in terms of
percentage relative standard deviation, 100 % - ok/k
(where 6k stands for o), as is customary in the field.

The calculated uncertainty values are compared
with values from [16, 17], where the test problem under
consideration was initially introduced. Results in these
references were obtained by various global sensitivity
analysis methods, including Monte Carlo sampling,

(04155 02168 -00529 —00237 0 0 0
02168 21383 00171 —06447 0 0 0
~00529 —00171 00170 00132 0 0 0
C=10"x|-00237 -06447 00132 08437 0 0 0 (38)
0 0 0 0 02311 01791 0
0 0 0 0 01791 96360 0
L0 0 0 0 0 0 52816

In egs. (37) and (38) cross-sections are given in

cm™! and the variances are given in cm 2.

Analysis

The analytical solution of the considered diffu-
sion problem, egs. (27) and (28), was calculated with
real number arithmetic and reference values were ob-
tained for the multiplication factor, as well as the nor-
malized forward and adjoint fluxes

k. =kl =110255

(39)
® =[10,037260]and @' =[0.88102, 10]

These values were then used to verify the solu-
tions obtained in the first two applications (namely,

quasi Monte Carlo and sparse grid quadratures, as well
as the asymptotic approximation. In addition, two of the
global sensitivity analysis methods, namely Monte
Carlo sampling and sparse grid quadrature, were
reimplemented in this study to more accurately deter-
mine the number of samples (i. e. diffusion solutions)
that are required to obtain a given precision of results.
The uncertainty calculated with the various global sen-
sitivity analysis methods is also reported in tab. 1.
Inspection of results in the table reveals that all
the methods yield uncertainty values that are close to
each other. It is particularly interesting to observe the
similarity between results from local and global ap-
proaches, which indirectly supports the rationale of
the asymptotic approximation in [17]. This approach
assumes that for small input uncertainties, the uncer-
tainty of the response is given by the linearised part of
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Table 1. Uncertainty and the required number of diffusion
calculations for different methods as applied to
the two-group test problem

Method Number Unier‘tainty
of samples |s,.10 ‘5k/k [%]
Automatic differentiation (local sensitivity analysis method)

Analytical formula 7* 5.9796| 0.5423

Power iteration 7* 5.9796| 0.5423

Perturbation formula 2 5.9796] 0.5423

Global sensitivity analysis methods (this work)
Gauss-Hermite sparse grid 15 59796| 0.5423
quadrature ) )

Monte Carlo 107 |5.9806] 0.5423

sampling/quadrature

Global sensitivity analysis methods (from literature)

Monte Carlo
sampling/quadrature [16]

Randomized quasi 4 103
Monte Carlo quadrature [16] 10°-10" | 5.980 | 0.5424

10°-10° | 5.979 | 0.5423

Gauss-Patterson sparse grid
quadrature [16] 29 5.972 | 0.5417

Asymptotic approximation [17] 7 5.979 | 0.5423

*Requires evaluation of dual number-valued functions

the model. As far as our test problem is concerned,
these results indicate that the local sensitivity analysis
procedure based on the automatic differentiation and
sandwich rule provides an accurate estimation of the
output uncertainty.

The computational cost is, however, different for
different methods. One may observe in tab. 1 that, for
the problem under consideration, the automatic differ-
entiation technique requires the smallest number of
samples, followed by the sparse grid quadrature, while
the Monte Carlo methods require several orders of
magnitude more samples. When performing this com-
parison, several factors have to be taken into account.

Firstly, dual-function evaluations require a small
factor with more arithmetic operations than the origi-
nal real number evaluation (the factor varies from two
for addition and subtraction to six for division). Tables
with the factors for different operations can be found,
e. g in[9, 10].

Secondly, the methods under consideration scale
differently for bigger problems. In this problem, there
are seven uncertain input parameters. We show, as an
example, an approach in which eight dual function
evaluations are used, though the number of function
evaluations can be reduced to seven by calculating the
gradient directly, at the additional cost of the sandwich
formula evaluation. More generally, the first two ap-
proaches require n or n + 1 dual function evaluations,
where n is the number of uncertain input parameters.
The perturbation formula requires » dual evaluations
of operators involved in the diffusion equation, while,
the diffusion problem has to be solved only twice: the
forward problem to obtain @ and the adjoint problem
to obtain @,

Furthermore, based on the results of this study,
and the properties of sparse grids, we expect that the
number of required samples is, at least, (2n + 1) for
sparse grid-based methods. One may also observe that
Gauss-Hermite sparse grid quadrature, employed in
our study, required a smaller number of samples than
its Gauss-Patterson counterpart. This difference may
be attributed to the quadrature weight used. The Gauss
-Hermite quadrature includes e‘H"z H as weight, which
may be the reason for its improved efficiency.

Our next comment is about the asymptotic ap-
proximation method, which in practice reduces to the
sandwich formula. This means the components of the
sensitivity vector must be calculated in some way. In
[17], sensitivities were calculated analytically for the
asymptotic approximation. If automatic differentia-
tion is employed to do so, the same number of dual-
function evaluations would be required as for the ana-
lytical or power iteration approaches, i.e.,norn+1.

Finally, unlike previously discussed approaches,
Monte Carlo methods are known to converge as the
square root of the number of samples, regardless of the
number of input variables. It may, therefore, become
comparatively more computationally efficient for par-
ticularly large problems.

CONCLUSIONS

In this study, we consider the problem of propa-
gating uncertainty from group-wise neutron cross-
sections to the results of neutronics diffusion calcula-
tions. We employed automatic differentiation in con-
junction with the sandwich formula for uncertainty
propagation in three different ways. Firstly, by evalu-
ating the analytical expression for the multiplication
factor using dual number arithmetic. Then, by solving
the diffusion problem with the power iteration algo-
rithm and the algebra of dual matrices. Finally, auto-
matic differentiation is used to facilitate the calcula-
tion of partial derivatives of the production and loss
operators in the perturbation formula in the context of
the adjoint-weighted technique.

The solution to the two-group diffusion equation
as calculated using dual number arithmetic recovered
the reference solution obtained with conventional real
numbers exactly. This holds for both the analytic for-
mula and the power iteration method. All three uncer-
tainty propagation methods applied in this work
yielded the same result for the uncertainty of the multi-
plication factor. Furthermore, they showed excellent
agreement with the global methods used for compari-
son, with differences below 1-10~ in all cases.

Uncertainty propagation and sensitivity analysis
based on automatic differentiation can be seen as a
useful addition to the traditionally used sampling or
perturbation methods, especially due to the possible
savings in computational cost associated with it.
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Magen M. BOKOB, Januen BOTEC, Cy3an A. XPYHEBAJI

MNPUMEHA AYTOMATCKOI JU®EPEHIIUMPAIA 3ACHOBAHOTI HA
APUTMETUIIN OYAJTHUX BPOJEBA HA IIPOINATAIINIY HEOJPEGLEHOCTU
ABOI'PYIIHUX HEYTPOHCKUX ITPECEKA

Tewma oBor papa je mpob6iiem mpormnaraiyje HeofipeheHOCTH rpynHUX HEYTPOHCKUX Ipeceka y
r100aTHUM AU Y3UOHIM NPOpavyHUMa HyKI€apHUX peakTopa. AYTOMATCKO pupepeHIupame 3aCHOBaHO
Ha apUTMETHLH AyaTHUX OpojeBa je NPHUMEHCHO Ha nponaraunjy HeosipebeHoCcTH y OKBUpPY aHanu3e
nokanHe oceT/buBocTu. Kao uinycrpanuja, pa3MOTpeH je ABOTPYIHU KPUTUUHU AU(Y3HUOHH NPOOIEM Y
0EeCKOHAYHO] CPEAMHU, KOJU IMa aHAJIUTUYKO pellienhe. AyTOMaTCKO AudepeHIrpambe y KOMOUHAIMjU ca
ceHJBUY (popMyIJIOM 3a Ipolnaranyjy HeogpebeHocT MPUMEHEHO je Ha TpH pa3iauuura HauuHa. [IpBo je
(pakTOp MYATUIUIMKALIMje U3padyyHAT aHAIMTHYKU NPUMEHOM apUTMETUKE yallHuX OpojeBa. 3aTuM je
KPUTUYIHU AUQY3UOHH NMPOOIEM pelleH METOAOM UTepanuje (PUCHOHOT M3BOpa M NMPHMEHOM ajiredpe
[lyaTHUX MaTPHUII. Konauno, mapiyjasau u3BOAM onepaTopa Npon3Bohema n ryduraka y nepTypOamnuoHoj
¢opMyH ca ajjjyHrOBaHOM TEKUHCKOM (PYHKIMjOM u3pavyHaTh Cy nomohy ayromartckor audepes-
nupama. Hymepnuko pemiewe audy3uoHor npobdiema je BepuHUKOBaHO ynopenebuBameM ca aHanu-
TUYKUM pelllekheM. Pesynatatu mpopadyHa HeofipebeHocTH ynopebeHm cy ca pe3ynraTuMa AoOUjeHUM
IPEMEHOM METOfIe TIT00allHe aHAIN3€e OCET/FIMBOCTH. Bpennoctn HeofppeheHocTH n3padyHaTe y OBOM pafy
cmaxy ce yayTap 1-107° ca BpeiHOCTHMA JIATHM Y TUTEPATYPH.

Kawyune peuu: ayiiomaiticko ougpeperyuparse, Oyaanu 6pojesu, ceHosuv popmyaa, anaiusa
ocettipusociiiy, upoiiazayuja Heoopeberociliu, uttiepayuja GucuoHoz u3eopa




