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This paper presents an approach based on the gamma-ray transmission technique and artificial
neural network for accurately measuring the thickness of various materials in flat sheet form. The
gamma-ray transmission system comprises a NaI(T1) scintillation detector coupled with a 137Cs
radioactive source. The artificial neural network model predicts the sample thickness through
three input features: mass density, linear attenuation coefficient, and In(R) - where R represents
the ratio of areas under the 662 keV peak in spectra acquired from measurements with and with-
out the sample. The artificial neural network model was trained using simulation data generated
by MCNP6 code, facilitating the creation of comprehensive datasets covering diverse material
types and thickness variations at a low cost. Hyperparameters of the artificial neural network
model were defined by several optimization methods, such as hyperband-bayesian, tree-struc-
tured Parzen estimator, and random search, to establish an optimal artificial neural network ar-
chitecture. Subsequently, the optimal artificial neural network model was deployed to predict the
thickness of graphite, aluminum, copper, steel, and polymethyl methacrylate sheets, using input
data obtained from the experiments. The results showed a good agreement between predicted
and reference thicknesses, with a maximum relative deviation of 1.94 % and an average relative

deviation of 0.52 %.
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INTRODUCTION

Flat sheets of various materials are extensively
applied across numerous modern industries, serving
as fundamental components for a multitude of prod-
ucts and structures. In automotive manufacturing, they
form crucial parts like body panels and chassis compo-
nents. In shipbuilding, they form vital structures such
as ship hulls, decks, and bulkheads. Within aerospace,
they contribute to the construction of aircraft fuselages
and wings. Furthermore, in construction and furniture,
they are used for crafting items like tabletops, shelves,
cabinet doors, and others.

Previous studies [1-3] have shown the thickness
effect on the mechanical properties of different materi-
als. These findings emphasize the importance of ad-
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hering to prescribed thickness standards to mitigate
safety risks and ensure optimal performance when us-
ing flat sheets. Therefore, it is essential to detect and
eliminate unsatisfactory input materials before they
enter the production line or assess the quality of
flat-rolled products at the output of the production
line. Accurate monitoring and characterization of the
thickness help to enhance product quality and increase
manufacturing efficiency. This task requires non-de-
structive techniques that operate consistently and con-
tinuously even under harsh conditions of industrial en-
vironments to accurately measure the thickness of
diverse materials.

Nowadays, various non-destructive techniques
have been developed to measure the thickness of flat
sheets, spanning from a few millimeters to several
centimeters. These techniques rely on different physi-
cal principles, including ultrasonic [4], eddy current
[5, 6], and gamma rays [7-13]. Each technique has its
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own set of advantages and disadvantages. When
choosing a thickness measurement technique for a
specific application, factors such as precision, cost,
thickness range, and sample composition should be
considered. Among the aforementioned techniques,
the gamma- -ray transmission (GT) technique [7-10]
stands out for its unique advantages that are particu-
larly suitable for monitoring the thickness of flat
sheets in industrial production processes. The GT
technique relies on the attenuation of gamma-ray
beam intensity as it passes through an absorbing sam-
ple to determine the thickness. Therefore, this tech-
nique applies to all material types and is less suscepti-
ble to variations in environmental factors and surface
conditions of the sample. Meanwhile, the ultrasonic
technique is less effective for highly attenuative or po-
rous materials, and the eddy current technique cannot
be applied to non-conductive materials. Both ultra-
sonic and eddy current techniques may be affected sig-
nificantly by environmental factors such as tempera-
ture, humidity, and electromagnetic interference [14,
15]. Moreover, the ultrasonic technique is sensitive to
the surface conditions of the sample, roughness on the
surface can affect the accuracy of ultrasonic thickness
measurements [16]. In industrial settings, materials
under examination are diverse, such as metals, plas-
tics, composites, rocks, woods, glasses, and more. En-
vironmental factors frequently fluctuate as well. Both
ultrasonic and eddy current techniques are not as suit-
able as the GT technique for such dynamic industrial
environments. Regarding the use of gamma-rays in
non-destructive testing, the gamma-ray back-scatter-
ing (GBS) technique has also been successfully de-
ployed to measure the thickness of flat sheets [11-13].
In comparison to the GBS measurements, the GT mea-
surements typically yield much higher counting rates
under identical conditions of radioactive source and
detector. Therefore, the GT technique is better suited
than the GBS technique for continuously monitoring
thickness in real time. In summary, from our perspec-
tive, the GT technique is most effective and suitable
for monitoring the thickness of flat sheets in industrial
production processes.

Over the years, researchers have continuously de-
veloped various analytical methods to enhance the preci-
sion and versatility of thickness gauges using the GT tech-
nique. Shirakawa [7] proposed a nonlinear model for
determining the thickness of steel sheets. This model was
based on using the effective linear attenuation coefficient
(LAC) to address the buildup factor in GT measure-
ments. Measurements were performed on steel reference
samples ranging from 0.35 cmto 10 cm in thickness, using
a system equipped with a '3’Cs radioactive source and a
gas detector. Using the experimental data, the author ap-
plied an exponential function to fit the relationship be-
tween the effective LAC and the thickness of steel sheets.
This enabled the thickness determination of steel sheets
based on gamma-ray counts recorded by the detector.

Chuong et al. [8] used MCNP6 code to simulate a GT sys-
tem, featuring a *’Cs radioactive source and a Nal(TI)
scintillation detector. The simulation spectra showed a
strong agreement with experimental spectra across vari-
ous thicknesses and material types of flat sheets. Subse-
quently, the simulation data were utilized to establish lin-
ear calibration curves by fitting the values of InR with the
sample thickness. Here, R represents the ratio of areas un-
der the 662 keV peak in spectra acquired from measure-
ments with and without the sample. The thickness of flat
sheets under examination was determined based on these
linear calibration curves. It should be emphasized that
each specific type of material requires its calibration curve
for accurate thickness determination. Variations in the
composition or density of the sample can invalidate previ-
ously established calibration curves. Therefore, the analyt-
ical methods described in references [7, 9] face limitations
in cases where a calibration curve for the material under
examination is unavailable. To address this challenge,
Chuong et al. [10] expanded the simulations to cover a di-
verse range of materials. Based on the simulation results,
the authors demonstrated a correlation between the slope
coefficient of the linear calibration curves and the LAC of
the samples. From there, a mathematical equation was es-
tablished to determine the sample thickness based on InR
and LAC values. Santos et al. [9] presented a methodol-
ogy based on the GT technique and artificial neural net-
work (ANN) to measure the thickness of some metal al-
loys. Using simulation data generated by the MCNP6
code, the authors established several ANN models and
evaluated their performance in predicting thickness. The
results indicated that an ANN model using input data
consisting of the area under the 662 keV peak and den-
sity of the sample produced accurate predictions of thick-
ness. Specifically, in 91.2 % of all cases examined, the
relative errors were below 1 %. For the remaining cases,
the relative errors ranged from 1 % to 5 %, all of which
were associated with thin samples. This demonstrates the
feasibility of integrating the GT technique with ANN for
predicting the thickness of different materials. However,
the focus of this study [9] is confined to some metal alloys
like aluminum, titanium, and carbon steel alloys. To ex-
pand the analysis to encompass a wider range of materials,
relying only on the area under the 662 keV peak and the
sample density as input data for the ANN model is insuffi-
cient for accurate thickness prediction. Indeed, interac-
tions between gamma rays with an energy of 662 keV and
matter involve two main mechanisms: the Compton scat-
tering (cross-section is proportional to Z) and the photo-
electric absorption (cross-section is proportional to Z>).
The presence of elements with high atomic numbers in the
material composition can significantly affect the attenua-
tion of a 662 keV gamma-ray beam. Therefore, it is neces-
sary to account for the influence of material composition
in the ANN model.

The ANN is a mathematical model that can learn
complex patterns and relationships from finite training
datasets. Given an adequate training dataset, the ANN
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can generalize correlations between output outcomes
and input variables, even when these correlations are
not apparent or exhibit clear trends. This ability en-
ables accurate predictions of interested information
across various complex scenarios. In recent years,
ANN has emerged as a powerful tool for multivariate
quantitative analysis that involves the consideration of
multiple variables and their interactions with one an-
other. Evaluating the capabilities and effectiveness of
ANN in various fields of nuclear science and technol-
ogy is highly meaningful. A previous study [17] has
confirmed that the ANN-based analytical method
brings notable improvements compared to earlier
methods for the efficiency calibration of HPGe detec-
tors. Therefore, itis expected that the integration of the
ANN model with the GT technique will significantly
enhance the precision of thickness measurements for
flat sheets made from diverse materials. This motiva-
tion drove us to conduct the present study.

The main goal of the present study is to develop
an ANN model for accurately predicting the thickness
of various materials, using input data obtained from GT
measurements with a 1¥’Cs radioactive source and a
Nal(Tl) scintillation detector. To perform this study, we
first used Monte Carlo simulations with the MCNP6
code to generate the pulse height distribution (PHD)
spectra for GT measurements across various thick-
nesses and materials of the sample. Through analysis of
the spectra, we determined the In(R) values, and an
ANN model was constructed to predict the sample
thickness. The dataset obtained from simulations was
used for training and validating the ANN model. Fi-
nally, experimental measurements were conducted on
several materials, including graphite, aluminum, cop-
per, steel, and polymethyl methacrylate (PMMA), to
provide data for testing the ANN model. The precision
of the ANN model is evaluated through the deviations
between the predicted and reference thicknesses. Addi-
tionally, the precision of the ANN model has been com-
pared to that of the calibration curve fitting (CCF)
method described in reference [10].

Osprey ! Detector block

—— Al sheet .-

MATERIALS AND METHODS

Experiments

To measure the thickness of flat sheets, we estab-
lished a GT system comprising a source block and a de-
tector block, as shown in fig. 1. The source block in-
cludes a '3’Cs radioactive source with an activity of 18.5
MBq contained within a cylindrical lead collimator with
adiameter of 1 cm and a length of 10 cm. This block pro-
duces a narrow beam of 662 keV gamma-rays that pre-
cisely targets the center of the detector block. The detec-
tor block consists of a Nal(Tl) scintillation detector
housed within a cylindrical lead collimator with a diame-
ter of | cmanda length of 2 cm. The distance between the
source block and the detector block is 37 cm.

The Nal(Tl) scintillation detector used in this
study has crystal dimensions of 7.62 cm x 7.62 cm and
an energy resolution of 7.3 % at the 662 keV peak. The
detector was connected to an Osprey unit and a com-
puter to form a gamma-ray spectrometer. The Osprey
is a versatile tube base for scintillation detectors, in-
corporating the high-voltage power supply, amplifier,
and digital multichannel analyzer. The multichannel
analyzer was operated in 2048-channel mode. Re-
corded signals are transmitted from the Osprey to the
computer via a USB cable, with spectral acquisitions
controlled by GENIE-2000 software version 3.3.

We conducted thickness measurements on flat
sheets made from five commonly used industrial materi-
als, including graphite, aluminum, copper, steel, and
polymethyl methacrylate (PMMA). These sheets have
dimensions of 10 cm x 30 cm, with thicknesses varying
as: 0.5 cmto 10 cm for graphite, 0.194 cmto 12.09 cm for
aluminum, 0.2 cm to 8.966 cm for copper, 0.59 cm to
9.416 cm for steel, and 1.0 cm to 12.0 cm for PMMA.
The thicknesses of all the sheets were measured using a
digital caliper with an uncertainty of 0.001 cm. The re-
sults obtained from these measurements were used as
reference thicknesses to verify the reliability of the ANN
model. Additionally, the mass density and LAC of these

i Source block

Figure 1. Experimental setup of the GT system for measuring the thickness of flat sheets
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Table 1. The mass density and LAC of the flat sheets used
in the experiments

Material Mass density [gem ] LAC [cm ]
Graphite 1.81 0.1398
Aluminum 2.70 0.2016
Copper 8.96 0.6506
Steel 7.85 0.5827
PMMA 1.16 0.0967

materials were measured on several standard samples, as
presented in tab. 1. The mass density was calculated as
the ratio of mass to volume. The LAC was determined
using the Lambert-Beer law in gamma-ray attenuation
measurements.

For the GT measurements, the sheet was posi-
tioned on a table so that its surface was perpendicular
to the symmetry axes of both the source block and the
detector block. The distance from the source block to
the front surface of the sheet was consistently main-
tained at 18.4 cm. Each sheet was measured three
times, with an acquisition time of 4000 seconds per
measurement. In total, 246 measurements were con-
ducted in this study. Besides, measurements were also
performed without a sheet present.

Monte Carlo simulations

To train an ANN model, a comprehensive train-
ing dataset is essential. Therefore, we needed to collect
a large amount of data from GT measurements for flat
sheets with different thicknesses and compositions.
However, collecting experimental data is often con-
strained by the difficulties involved in preparing stan-
dard samples with precise thicknesses and composi-
tions. It is not feasible to create a training dataset
entirely from experiments. In situations where experi-
mental measurements are inconvenient or impractical,
the Monte Carlo simulation method is an excellent so-
lution for generating the necessary data to train an
ANN model. Over the years, several general-purpose
Monte Carlo codes, suchas MCNP[18], GEANT[19],
and PENELOPE [20], efc., have been developed to
simulate the transport of radiations in 3-D geometries.
These codes accurately model the interactions of radi-
ation with all materials across a wide range of ener-
gies. By utilizing one of these codes, simulations of
GT measurements can be conducted easily and
cost-effectively.

Nal(Tl) detector

Lead collimator Flat sheet

In this study, the MCNP6 code was used to gen-
erate the PHD spectra for the Nal(Tl) scintillation de-
tector in GT measurements. To do this, we created a
simulation model (input file) based on the existing GT
system, as illustrated in fig. 2. In this simulation
model, the geometrical parameters are meticulously
and precisely described to match those of the actual
GT system. The radioactive source was modeled to
emit photons with an energy of 661.657 keV. It is im-
portant to note that the specifications of the Nal(TI)
scintillation detector were thoroughly benchmarked in
our previous study [21].

The simulation model takes into account the in-
teraction processes of photons with matter, including
the photoelectric effect, Compton scattering, Rayleigh
scattering, pair production, and fluorescence. The
photon interaction and atomic relaxation databases are
sourced from ENDF/B-VI.8. The cut-off energy for
photon transport is set at 1 keV. Besides, the character-
istics of the PHD spectrum recorded by the Nal(T1)
scintillation detector were also carefully considered.
The tally F§ and FT8 GEB a b ¢ cards were used simul-
taneously to produce simulated spectra that closely
match the experimental spectra. The energy bins in the
simulated spectra were configured to correspond to
the channels in the experimental spectra. The a, b, and
¢ parameters accurately characterize the full width at
half maximum (FWHM) of peaks across various ener-
gies of incident photons.

To ensure a diverse dataset for training the ANN
model, we conducted simulations for GT measure-
ments on 34 different types of materials. These in-
cluded 21 single-element materials and 13 multi-ele-
ment materials, with effective atomic numbers ranging
from 6 to 83. Most of these materials are commonly
used in industry. The mass density and LAC of these
materials are presented in tab. 2, with LAC values cal-
culated using the XCOM program [22]. For each ma-
terial, the thickness of flat sheets varied from 0.2 cm to
12 cm. In cases involving materials with high mass
density and atomic number, the intensity of the trans-
mitted gamma-ray beam was almost completely atten-
uated, causing the simulation to stop when the thick-
ness of the flat sheet was less than 12 cm. In each
simulation, the histories of 10 billion source particles
were tracked to obtain the PHD spectrum with high
statistical accuracy. In total, we performed 772 simula-
tions corresponding to various materials and thick-
nesses of the flat sheets.

Lead collimator

1%7Cs source)

Figure 2. Simulation model of
the GT system using MCNP6
code
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Table 2. The mass density and LAC of the flat sheets used in the Monte Carlo simulations

Material Mass density [gem™>] | LAC [em '] Material Mass density [gem ] | LAC [em™']
Graphite 1.70 0.1312 Platinum 21.45 2.2265
Aluminum 2.70 0.2016 Gold 19.32 2.0479
Titanium 4.54 0.3266 Lead 11.35 1.2508
Iron 7.87 0.5786 Bismuth 9.75 1.0975
Copper 8.96 0.6506 Rubber 0.92 0.0793
Zinc 7.14 0.5229 Polyethylene (PE) 0.93 0.0819
Germanium 5.32 0.3770 Polytetrafluoroethylene (PTFE) 2.25 0.1669
Zirconium 6.51 0.4762 Pyrex glass (PG) 2.23 0.1716
Silver 10.50 0.8013 Granite rock (GR) 2.69 0.2063
Tin 7.31 0.5526 2090-T83 Aluminum 2.59 0.1928
Terbium 8.23 0.7156 7075-T6 Aluminum 2.81 0.2096
Thulium 9.32 0.8568 3003-O Aluminum 2.73 0.2038
Lutetium 9.84 0.9263 Concrete 2.30 0.1814
Hafnium 13.31 1.2647 C95800 Copper 7.64 0.5578
Tantalum 16.65 1.6071 C27000 Copper 8.47 0.6171
Tungsten 19.3 1.8879 321 Stainless Steel 8.0 0.5884
Iridium 22.42 2.2936 S45C Steel 7.85 0.5770
T T T T T T T
16000 -
o Experimenatal data
14000_- Simulated data 662 peak |
3 ] 5
o
Figure 3. The Rol in the § 12000t aheet .
experimental and simulated spectra B -
§ -

Data analysis

A two-step data analysis process was conducted to
collect the necessary data for training, validation, and
testing of the ANN model. In the first step, we analyzed
the PHD spectra obtained from both experiments and
simulations to determine the areas under the 662 keV
peak. Initially, a region of interest (Rol) was selected,
spanning from channel 1300 to channel 1700 in each
spectrum, as illustrated in fig. 3. Note that the width from
the peak center (approximately channel 1500) to the Rol
boundaries is roughly four times the standard deviation
of the peak. This means that 99.9936 % of the events,
where the 662 keV gamma-rays deposited all of their en-
ergy in the detector, were recorded within the Rol. Then,
the area under the 662 keV peak was calculated by sum-
ming the counts within the Rol.

T
2000

1500
Channel

In the second step, the R¥*P and RS™ ratios were
calculated as follows

Exp
R Exp _ xEXp (D
0
. Sim
NO

where N**? and N g"p are the areas under the 662 keV
peak in the experimental spectra for GT measurements
taken with and without flat sheet, respectively, NSm
and N 3™ and are the areas under the 662 keV peak in
the simulated spectra for GT measurements taken with
and without flat sheet, respectively. Then, we deter-
mined the values of In(R™) and In(R%™). These values
serve as one of the input variables in the ANN model.
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It is necessary to emphasize the significance of
using the R ratio in this study. Some differences be-
tween experiment and simulation are inevitable. These
differences arise from several factors: the uncertainty
of the radioactive source activity, the precision of the
Monte Carlo code in modeling interactions of radia-
tion with matter, and the accuracy of nuclear databases
(such as gamma-ray emission intensity and radioac-
tive half-life). This can result in unignorable devia-
tions between NE*P and NS, Therefore, we did not use
NSI™ ag input data for the ANN model. Instead, we
found that the R ratio can be employed to eliminate the
influence of the aforementioned factors, thereby pro-
viding an excellent agreement between experimental
and simulated results. Indeed, many previous studies
[8, 10, 23-26] demonstrated that the RS™ ratio is reli-
able enough to replace the RE*P ratio for constructing
calibration curves or training ANN models.

ARTIFICIAL NEURAL NETWORKS
Multi-layer perceptron model

In this study, we developed a multi-layer
perceptron (MLP) model to accurately predict the
thickness of various flat sheets, as illustrated in fig. 4.
The MLP is a fundamental type of ANN that simulates
the biological neural network in the human brain. Its
architecture comprises an input layer, one or more hid-
den layers, and an output layer. Each of these layers
contains nodes, also referred to as neurons, which
serve as the basic units for processing data within the
network. The input layer comprises three neurons,
each neuron representing a specific input feature:
In(R), mass density, and LAC. The hidden layers are
positioned between the input and output layers. Each

hidden layer performs complex computations and
transformations on the inputs received from the previ-
ous layer. The number of hidden layers and the number
of neurons per hidden layer can vary depending on the
specific application and complexity of the problem.
The output layer comprises a single neuron that pro-
duces the final prediction for the thickness of the flat
sheet.

The operation of the MLP model begins with as-
signing initial weights and biases to the connections be-
tween neurons. These weights and biases are initialized
randomly. The learning process occurs through the for-
ward and backward propagation of data between the in-
terconnected neurons. In the forward propagation phase,
the input data is processed at the input layer and passed to
the first hidden layer. Each neuron in the hidden layer re-
ceives inputs from the previous layer, computes a
weighted sum of these inputs, adds a bias term, and then
applies an activation function. The activation function
introduces non-linearity into the network, enabling it to
learn complex relationships and patterns. The result of
each neuron is then passed to the neurons in the next
layer, continuing until the data reaches the output layer.
Finally, the neuron in the output layer produces the thick-
ness predictions. The difference between these predic-
tions and the actual target values across the entire dataset,
known as the loss, is quantified using the mean squared
error (MSE) as a loss function. Subsequently, the back-
ward propagation phase is conducted to adjust the
weights and biases within the network, aiming to mini-
mize the loss. This process propagates the error gradient
backward through the network, starting from the output
layer and moving towards the input layer. The gradient of
the loss function is calculated concerning each weight
and bias, thereby indicating the direction and magnitude
of the necessary adjustments to reduce the loss. Using the
adaptive moment estimation (ADAM) optimization al-
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Figure 4. The MLP architecture developed in this study for predicting the thickness of flat sheets
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gorithm, weights and biases are then updated in the di-
rection that decreases the loss. Lower loss values indicate
better model performance, enabling the model to make
more accurate predictions and effectively capture the un-
derlying relationships in the data. Forward and backward
propagation are repeated over many iterations, known as
epochs, to improve the performance of the MLP model.

Evaluating the performance of an MLP model is
essential to ensure its accuracy and reliability in mak-
ing predictions. This task requires the use of various
statistical metrics, including MSE, mean absolute per-
centage error (MAPE), and coefficient of determina-
tion (R?). These metrics are defined as follows

MSE :;1' ilzl(diref _dipred)2 (3)
n dArcf —d,per
mapE =20 85 G 4)
n =l di
S (dff —d Py
R* =1-"! : 5)

M=

(diref —d pred)2
i=1

1

where d " and d ipred are the i " reference thickness and
the i ™ predicted thickness, respectively; ¢ P9 — the
average of all predicted values, and n — the number of
data points.

Training, validation, and testing datasets

All data obtained from the experiments and sim-
ulations were divided into three subsets: training, vali-
dation, and testing datasets. Each subset serves a dis-
tinct purpose in the MLP model development process.

The training dataset is used to train the MLP
model. This dataset consists of simulated data, which
provides the primary data foundation for the model to
understand and generalize the relationships within the
problemto be solved. Figures 5(a) and 5(b) display the
values of In(RS™) corresponding to various materials
and thicknesses included in the training dataset. Infor-
mation about the mass density and LAC of the materi-
als used in the training dataset can be found in tab. 2.
The training dataset comprises 611 data points, ac-
counting for 79 % of all data generated from the simu-
lations.

The validation dataset is used to tune the
hyperparameters of the MLP model and to prevent
overfitting. This dataset is composed of simulation
data that is entirely separate from the training dataset.
Figure 6 displays the values of In(RS™) corresponding
to various materials and thicknesses included in the
validation dataset. Information about the mass density
and LAC of the materials used in the validation dataset

can be found in tab. 2. The validation dataset com-
prises 161 data points, accounting for 21 % of all data
generated from the simulations. These data points are
not used directly in the training process but serve as
checkpoints to periodically evaluate the performance
of the MLP model. This helps ensure that the model
generalizes well to new and unseen data.

The testing dataset is used after the ANN model
has been fully trained to evaluate its final perfor-
mance. To provide an unbiased assessment of the pre-
dictive power of the trained MLP model and general-
ization capabilities in real-world scenarios, the testing
dataset is composed entirely of experimental data. Fig-
ure 7 shows the values of In(RF*P) corresponding to
various materials and thicknesses included in the test-
ing dataset, which consists of 246 data points. Infor-
mation about the mass density and LAC of the materi-
als used in the testing dataset can be found in tab. 1.

Hyperparameter optimization

In the MLP models, crucial hyperparameters in-
clude the number of hidden layers, the number of neurons
per hidden layer, the activation functions, the learning rate,
the batch size, and the number of epochs. These
hyperparameters are predefined and remain constant
throughout the training process. They influence the learn-
ing process and performance of the MLP model. There-
fore, selecting the optimal hyperparameters is a critical
step in developing an effective MLP model. However,
finding the optimal values for hyperparameters is a com-
plex process because the values of some hyperparameters
can depend on others. This interdependence creates nu-
merous optimization opportunities, requiring researchers
to spend significant time surveying and evaluating differ-
ent combinations.

Fortunately, several optimization techniques have
been developed to automatically identify the optimal val-
ues for hyperparameters. In this study, we applied three
optimization techniques, including hyperband-bayesian,
tree-structured Parzen estimator, and random search, to
determine various sets of optimal hyperparameter val-
ues. This approach helps save time and computational re-
sources while enhancing the performance of the MLP
model. The hyperparameter search space was estab-
lished as:

—  Theactivation function is chosen from the following
options: tanh, softsign, sigmoid, linear, and selu.
—  The number of hidden layers varies from 1 to 5.

— The number of neurons within each hidden layer
varies from 3 to 100.

—  The batch size varies from 6 to 100.

—  The learning rate varies from 10 to 107,

—  The number of epochs remains constant at 1000.
For each optimization technique, the process of

finding optimal hyperparameters was run 100 times,

and the best result among these runs was selected.

Therefore, we have obtained three different sets of op-

timal hyperparameter values, as presented in tab. 3.
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Figure 5. Data points of In(R5™) in the training dataset

Subsequently, MLP models were trained based on
these sets of optimal hyperparameter values. From the
trained MLP models, we computed statistical metrics,
such as MSE, MAPE, and R?, on both the training and
validation datasets. The criteria for selecting the opti-
mal MLP model are the lowest MSE and MAPE, along
with an R? value closest to 1. As shown in tab. 3, the
MLP model optimized with the tree-structured Parzen
estimator technique exhibited the best statistical met-
rics. These metrics confirm that the model achieves
high accuracy and reliability in predicting the thick-

ness of flat sheets. Furthermore, the training process
shows no indications of overfitting. Consequently, this
model was selected for predicting the thickness of flat
sheets in real-world scenarios.

RESULTS AND DISCUSSIONS

We applied the trained MLP model to predict the
thickness of various flat sheets based on input data col-
lected from experiments (testing data). Figure 8 dis-
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Figure 7. Data points of In(R®®) in the testing dataset

plays the comparison between the reference and pre-
dicted thicknesses, clearly showing that the predicted
values align closely with the reference values. The sta-
tistical metrics reveal an MSE of 0.1299, a MAPE of
0.5173, and an R? 0f 0.9999. Additionally, all relative
deviations (RD) between the predicted and reference
thicknesses are less than 2.0 %. These results confirm
the precision of the trained MLP model for predicting
the thickness of flat sheets in practical settings.

Besides, the CCF method, as described in refer-
ence [10], has been applied to determine the thickness
of flat sheets. To do this, the simulation data were uti-
lized to construct a calibration curve, and experimen-
tal data were employed to evaluate the precision of the
method. Figure 9 shows the RD between the reference
thicknesses and the thicknesses determined by the
ANN and CCF methods across five different materi-
als. In general, the RD with the ANN method are
smaller than those with the CCF method in most cases.
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Table 3. The sets of optimal hyperparameter values determined by the optimization techniques

and their statistical metrics

Description of parameters Values obtained based on various optimization techniques
Hyperband-Bayesian Tree-structured Parzen Estimator Random Search
Activation function Tanh Softsign Tanh
Number of hidden layers 3 3 3
Number of neurons per hidden layer 61 62 122
Batch size 12 36 67
Learning rate 0.0003129 0.0011666 0.0096071
MSE for the training dataset 0.1463 0.0854 0.2690
MAPE for the training dataset 0.880 0.7439 1.2494
R? for the training dataset 0.9999 0.9999 0.9998
MSE for validation dataset 0.1210 0.0619 0.1668
MAPE for validation dataset 0.8287 0.6468 1.1204
R? for validation dataset 0.9999 1.0 0.9999
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Furthermore, both the average RD and maximum RD
with the ANN method are significantly lower than
those with the CCF method, as presented in tab. 4. An
exception is observed for the PMMA material, for
which we currently lack a definitive explanation.
However, this exception does not substantially affect
the overall trend observed. Based on these results, it is
evident that the ANN method provides more accurate
outcomes compared to the CCF method for the GT
system used.

It should be noted that the thickness measure-
ments obtained through the CCF method in this study
did not achieve the same level of accuracy as those re-
ported in reference [10]. This discrepancy can be at-
tributed to differences in the measuring geometries. In
the current set-up, the collimators have a larger diame-
ter and a shorter length compared to the previous con-
figuration. Such changes in geometry could compro-
mise the linear relationship essential for calibration

curves. Consequently, for measurement geometries
involving poor collimators, using the ANN method is
recommended to enhance the precision for thickness
measurements. The term poor collimators refers to
collimators characterized by a large diameter and a
short length.

CONCLUSIONS

In the present study, we propose an approach that
combines the GT technique (using a '3’Cs radioactive
source and a Nal(T1) scintillation detector) with ANN
to measure the thickness of flat sheets made from di-
verse materials. The results confirm the feasibility of
our approach for providing accurate predictions of
thickness. Indeed, the very low relative deviations be-
tween the reference and predicted thicknesses, with an
average of 0.52 % and a maximum of 1.94 % across in-
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Figure 9. The relative deviations between reference thicknesses and thicknesses determined by the ANN and CCF

methods across five different materials

Table 4. The average and maximum relative deviations
obtained from the ANN and CCF methods

ANN method CCF method
Material | Average RD|Maximum | Average |Maximum
[%] RD [%] | RD [%] | RD [%]
Graphite 0.29 1.01 0.55 1.32
Aluminum 0.40 1.58 1.15 2.41
PMMA 0.83 1.88 0.50 1.59
Steel 0.39 1.94 0.59 1.33
Copper 0.76 1.92 1.63 2.28
All materials 0.52 1.94 0.92 2.41

vestigated materials, demonstrate the excellent reli-
ability of this approach. Furthermore, the strengths of
our approach lie in the simplicity of the data analysis
process and the robust ability of the MLP model to
generalize the relationships between input variables
and desired outputs. Using the Monte Carlo simulation
method, the necessary data for training the MLP model
can be flexibly and cost-effectively generated. These
advantages underscore the significant potential of this
approach for practical implementation.

Besides, this study shows that using ANN sig-
nificantly enhances accuracy compared to the previ-
ously developed CCF method. We predict that these
improvements will be even more pronounced in cases
where the GT system is not equipped with good
collimators. In such cases, the linear relationships in
the calibration curves may not be maintained, leading
to decreased accuracy in the CCF method. Therefore,
it is recommended to use the ANN method for mea-
surement geometries that involve poor collimators.
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Jle Tu Hrox TPAHT, Hryjen Tu Tpyk JINIb, Tpan Tun TAIb,
Xoanr [yk TAM, Xyji Jus HYEHI

INOCTYIIAK 3ACHOBAH HA TEXHUIIM ITPEHOCA TAMA 3PAYEIbA
N BEHITAYKOJ HEYPOHCKOJ MPEXKU 3A INIPEIIM3HO MEPEIBE
JEB/bUHE PA3ZINYUTUX MATEPUJAIIA

[Ipuka3aH je mpucTym 3aCHOBAaH Ha TEXHUIU MMPEHOCA raMa 3pavyeHa U BelITauYK0] HEYPOHCKO]
MpEKH 33 MPEN3HO Mepehe AeOIbIHE PA3IMUUTAX MaTepujalia y o0auKy paBHor incta. CHCTeM 3a PEeHOC
rama 3padema caapxu Nal(Tl) cquaTunanguonn geTekTop nosesan ca '*’Cs pauoaKTHBHAM H3BOPOM.
Mopen BemTauke HEYpOHCKe Mpexe npefsuba MeGbUHY y30pKa NMPEKO TPH yila3He KapaKTepHUCTUKE:
TYCTHHE Mace, TnHeapHoTr KoeduimjenTa cnadbibema u In(R) — rae R npeacrasmba 0qHOC HOBPIIMHA HCIION
nuKa ofi 662 keV y ciektpuma fo6ujeHuM MepeuMa ca u 6e3 y3opka. Mojies BelTauke HeypoHCKe Mpexke
yBexXOaH je KopullhelheM CUMYJAaNuoHMX mopartaka reHepucannx MCNP6 kopom, osakmraBajyhu
Kpeupame cBeoOyXBaTHUX CKYIIOBA MOJlaTaKa KOju IIOKPUBAjy pa3IudnTe BPCTE MaTeprjaia 1 Bapujanyja
neOJpUHE O HIUCKO] IIeH!. XUIlleprnapaMeTpy MOJIeJia BelITauKe HEYPOHCKE MpeKe Ne(PUHICAHY CY TOMOKY
HEKOJIMKO METO/a ONTUMHM3AlIKje, Kao mTo cy xunepbana-bajecosa, npBo-cTpykrypupanu [1ap3eHoB ec-
TEMAaTOp W CIIydajHa MpeTpara, la Ou ce yCmocTaBWiia ONTHMAJIHA apXUTEKTypa BellTauke HEYpPOHCKe
Mpexe. [1oTOM je mpuMemeH ONTHMANIHU MOJIENT BElITavyke HEYpOHCKE Mpexke jjla O ce mpefBHesa
neOJpUHA TUCTOBA rpaduTa, aTyMUHUjyMa, 6aKpa, YeInKa 1 MOJIMMETII MeTakKpuiiaTta, kopucrehn ynazue
nojaTke MoOujeHe U3 eKClepuMeHaTa. Pe3ynratu cy mokasanu [oOpo ciarame u3mMebhy npenBuieHux u
pedepeHTHHX Ae0bIHA, CA MAKCUMATHAM PEJIATHBHAM OfICTyNameM o7 1,94 % u mpoceYHuM pelaTUBHUM
opcrymamem of 0,52 %.

Kmwyune pequ: seuuttiauka HeypoHCKa Mpexca, pasHa ao4a, UpeHoc 2ama 3paierba, meperse 0ebmune




