E. D. Poulopoulou, et al., A Technical Note on the Uncertainties of the Chen ...

160

Nuclear Technology & Radiation Protection: Year 2024, Vol. 39, No. 2, pp. 160-166

A TECHNICAL NOTE ON THE UNCERTAINTIES OF THE
CHEN CORRELATION FOR THE BOILING HEAT TRANSFER

COEFFICIENT AT SATURATED FLOW
by

Electra D. POULOPOULOU and Nick P. PETROPOULOS”

Nuclear Engineering Laboratory, School of Mechanical Engineering,
National Technical University of Athens, Athens, Greece

Technical paper
https://doi.org/10.2298/NTRP2402160P

The so-called Chen correlation for the boiling heat transfer coefficient at saturated flow has
been, since 1966, the year of its publication, largely cited as one of the most successful of its
kind. As well known, it is based on adding terms respective to heat transfer in the liquid part
and heat transfer in the steam part. The respective formulae incorporate both the Reynolds
number factor F and the suppression factor S. At the time, Chen accepted F and S to be de-
rived graphically. Nevertheless, and mainly for computational purposes, several equations
have been proposed approximating these two factors. These equations have been reviewed for
accuracy and typos and are now widely accepted. However, there has not been any attempt to
associate the results of the Chen correlation with the expected uncertainty. The objective of
this short report is to process the Chen correlation in terms of its uncertainty based on the un-
certainty of factors F and S. The uncertainties of F and S were derived digitally from the
graphs of F and § in the original work of Chen of 1966. Following digitization the uncertainty
data were processed to provide uncertainty formulae in polynomial form. It was accepted that

the uncertainty level of F and S was & =1.

Key words: Chen correlation, flow boiling at saturation, heat transfer coefficient,
Reynolds number factor, suppression factor

INTRODUCTION

The Chen correlation for the heat transfer coeffi-
cient of saturated flow boiling, as in [1, 2], is one of the
most widely used in flow boiling heat transfer prob-
lems. As per today's (2024) available data it has been
cited about 3000 times (as per the Google Scholar data
in early 2024). According to this correlation, two-phase
flow boiling heat transfer coefficient /# could be de-
scribed by the heat transfer of forced convection (fc)
within the saturated liquid and the heat transfer of satu-
rated nucleate boiling (nb). The two components act in
an additive manner and their weight in the sum could be
accounted using the Reynolds number factor F' and the
suppression factor S. Therefore, it is

Chen [2] successfully suggested that the hfc

component could be described using the Dittus and
Boelter equation [3].

* Corresponding author, e-mail: npetr@mail.ntua.gr

Further, he successfully accepted that the hnb
could be determined by the Forster and Zuber equation
[4]. The details of both equations are available in their
original publications and the successive publications
mentioning the Chen correlation. However, the /g,
component is a function of a liquid Reynolds number
Re, as provided by the formula

Re, = UZDGDy @)
Hy
where x is the quality of the steam, G [kgm *s '] — the
mass flux, Dy [m] — the hydraulic diameter, and g,
[Pas™'] — the dynamic viscosity of the liquid.

Chen [2] further suggested that there exist
graphical functions for the Reynolds number factor £,
fig. 1 and the suppression factor S, fig. 2. The graphs in
figs. 1 and 2 were derived heuristically based on nu-
merous experimental data. Figure 1 is a plot of F'vs the
reciprocal of the Martinelli parameter 1/X;, calculated

by
. 0.1
Xtt :(F_xjo.9(p_g]05['u_l] (3)
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10 P It could be said also, and this is accepted in this
| study as well, that the most accurate expression for S
F Above fitted line H
8P region could be the one proposed in [13]
10" 1/ (1+012Rek ), forReqp <325,
S =41/ (1+042Re%p" ), for 325<Reqp <70, (6)
/) // i e 00797¢17Rew /™) forRepp > 70
10° - / . .
/ 71/ / / where Rerp is the effective two-phase Reynolds num-
Below fitted line ber as in
<—0F> region 4 1.25
Rerp =107 -Re; F @)
107 + + . . .
1o 16 i e i Further discussion on the accuracy of this ex-
! pression could be also found in [5]. However, up to
Figure 1. Reynolds number factor, F [5] now (2024) it seems that nobody would care to effec-
tively address the precision of the graphs and the pro-
14 vided expressions. Therefore, this short report at-
0.9 y Kbovefiied fins tempts to examine this problem.
0.8- ////// <+0S> region
S o
0.6-F /// Below fitted line METHODS
05 ’ //// <—0S> region
‘ / / / As well known in the respective theory, for a
L > function g of several variables x, y,..., z, which is com-
0.3 Approximate puted as ¢(x,..., z), X, ,..., z could be measured uncer-
02 regienat dae / / tainties x,...,5z. These uncertainties, as per [17], may
04-t //// / 7] include both Type A and Type B components and are
- — AL LAY used to quantify the uncertainty of ¢
10* 10° Re 10°

Figure 2. Suppression factor, .S [5]

where p [kgm ] is the density, g — the gaseous phase,
and | — the liquid phase

Figure 2 is a plot of S vs. the effective two-phase
Reynolds number. This effective Reynolds is a func-
tion of F as in

Re=Re, F'¥ 4)

In figs. 1 and 2 the curves are graphical best fits
for F and S respectively, while the shaded areas ac-
count for the respective deviation <+t6F>, <-6F> and
<+68>, <-0.5> around the fitting functions.

Chen [2] did not prepare any equations for these
best fits or deviations. However, and for obvious rea-
sons, others have proposed in succession several such
equations as best fits for 7 and S. A different Chen and
Fang [5] has presented and critically reviewed all up to
the then-existing expressions for " and S and com-
pared these expressions with the original graphs in [2].
It could be said, and this is accepted in this study, that
the most accurate expression for F' could be

5
1, if1/x, <01 ©)

. _{ 235(1/X  +0213)0.736,if 1/X ,, >01
i.e., the one proposed and agreed in [6-16]. Further
discussion on the accuracy of this expression can be
found in [5].

B @ 2 @ 2
O T TS

Equation (8) stands if the measurement of x (or y
or z, etc.) has the form xy, . + x. Then the best estimate
of ¢ 1S Gpegt = G (Xpest> Voes> €2€-)- Since, for the examined
case, F'and S have been estimated by several contribu-
tors using various methods, there is trust that the rele-
vant errors are not related. Applying eq. (8) to eq. (1) at
least part of the uncertainty of the heat transfer coeffi-
cient could be obtained as a function of the uncertainties
of quantities F and S. This uncertainty could be ac-
cepted as total uncertainty under the assumption that
there is no significant uncertainty contribution from
other parameters involved in the calculation. Therefore

Sh=A[(hSF ) + ...+ (hy6S ) 9)

with unknowns 6 F and S, for which there exist only
graphical representations and no mathematical formu-
lae.

In this work, the uncertainty ranges of F' and S
have been digitized from the graphs of figs. 1 and 2.
Then, the data for <6F> and <65> derived from the
digitization were fitted to polynomial correlations as
functions. In the case of F, <t0F> was calculated as a
function of /" and as a function of 1/X,,. In the case of S,
<#5S5> was calculated as a function of S and as a func-
tion of Repp.



E. D. Poulopoulou, et al., A Technical Note on the Uncertainties of the Chen ...

162

Nuclear Technology & Radiation Protection: Year 2024, Vol. 39, No. 2, pp. 160-166

It goes without saying that there were no weights
assigned for different values of <6 F>and <#5.5> since
such weights are unknown. It is understandable from
fig. 1 that for each /" and each 1/X;,, there would be two
polynomial fittings, one for <+5F> and one for <0 F>.
In the same way, it is derived from fig. 2 that for each S
and each Rep, there would be two polynomial fittings,
one for <+5S5> and one for <-65>. Due to the obvious
shapes of <+t0F>, <-0F>, <+0S> and <-05> the poly-
nomials chosen were of significant order. However, not
in every case, all power terms were proven significant
(i.e., their associated fitting errors were too big for some
power parameters to be considered).

RESULTS

The previously mentioned obtained polynomial
functions are given collectively and as numbered
equations in tab. 1.

Equations numbered in tab. 1 are interpreted in
the following generic manner

(6)(x) = $B (10)
i=0

Table 2 presents the standard errors of parame-
ters B; as these resulted from the fitting procedures.
Further, tab. 2 contains the Adj. R? coefficient of deter-
mination for all fittings.

Following eq. (10) and tabs. 1 and 2 it is easily
derived that, for example, eq. (11) could be written as

(+6F)(1/X )= (08+01)+
+(030£003)(1/X ) -
—(0.0040+ 0.0009)(1/X ,)* +

+(34-107° £73-10%)(1/x ,)° )

while, once more, for example, eq. (20) could be writ-

ten as
(+6F)

(1/X )= (049+001)—

—~(0.032+0.006)(1/X , )+
+(0.0013+ 0.0003)(1/X , ) -
—(21-107° £07-107° )(1/X ,)* +

+(11-1077 £04-107)(1/x ,)* (20)
Ithas to be mentioned that, since all equations re-
sulted from the digital reprocessing of figs. 1 and 2,
there should exist a validity region for each of the
above equations. This is accounted for in tab. 3.

All fittings regarding the uncertainty of F~ were
based on N =27 pairs of digitized coordinates, while all
fittings regarding the uncertainty of S were based on N =
= 36 pairs. The necessary values of /" were obtained from
eq. (5) and the necessary values of S from eq. (6). Obtain-
ing F and S from the graphs in figs. 1 and 2 respectively
instead of obtaining them from eqgs. (5) and (6), resulted
in almost identical fittings; the corresponding parameters
were found to be slightly different within error. All fit-
tings were performed using the Levenberg — Marquardt
method and the commercially available software
OriginPro 9.0.0 Pro (32-bit) SR2 b87 by OriginLab Cor-
poration (http://www.OriginLab.com).

The fittings for <SF> present an excellent R>>0.97;
the fittings for <9S> present a very good R? > 0.85; the fit-
tings for <O F>/F present a very good R? > 0.77; finally, the
fittings for <6S>/S present a very good R> > 0.97.

DISCUSSION AND CONCLUSIONS

Within this study, several parametric equations in
polynomial form have been prepared and presented re-

Table 1. Parameters of the polynomial functions for <t6 > and <t55>

Equation| - pynction By | B B, Bs By | Bs Bq B, By
11 <+t5F>(1/X,) | 0.8 | 030 | -0.0040 | 3.4.10° - - - - -
12 <+SF>(F) 03 | 032 | —0.005 | 810° - - - - -
13 < SF>(1/Xy) —6-107* - - - - - -
14 <SF>(F) 0.16 | 410" - - - - - -
15 <+55>(Re) 10-9 " 107" —  F1.76669-107° 2.31166-10°° |-1.25773-10*
16 <+55>(S) 1107
17 <55>(Re) [-0.098.9-10°/-1.810" 10" 17.51021.6:10% —1.3-102
18 <55>(S) 04| 11 309 522 - -
19 |[F'<t5F>](1/X,)| 0.49 |-0.032 —2.1:10° | 1.1-107 | — - - -
20 [F'<+5F>](F) | 0.51 | —0.02 | 0.0006 | —5-10° - - - - -
21 |[F'<SF>](1/X,)| 0.413 | —0.032 -1.810°| 10° - - - -
22 [F'<-SF>)(F) | 0.44 [-0.028| 810* | —7-10° - - - - -
23 [S'<+58>](Re) | —1.4 [1.2:10°%-3.1-10°| 4.0.10" | 107 [1.2.10%] —2.9-10%° E-36 —2.0-10*
24 [S'<+85>1() - - -
25 [S'<-8S>](Re) |-0.25(2.1:10°|-3.8-10 '°|3.195-10 "*}1-1.1-10291.3-10 % — — —
26 [S'<-55>1(S) |-0.22| 303 | 289 1136.8 | —2207 | 2092 773 - -
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Table 2. Respective fitting errors of the parameters presented in tab. 1
F;l?lﬁggrn Function By B B, Bs By Bs Bs B; By R
11 <+0F>(1/Xy) 0.1 £0.03 | £0.0009 |+0.7-107 - — — - — 0.99
12 <+6F>(F) 0.1 £0.04 | £0.001 | £2.10° - - - — — 0.99
13 <-85F>(1/X,) |CONST *1-10° - - - - - -
14 <S8F>(F) |CONST| #0.01 | +2.10* - - - - - - 0.98
15 <+05>(Re) NA* NA NA NA NA NA NA NA NA
16 <+55>(S) NA NA NA NA NA NA NA NA - 0.96
17 <-5S5>(Re) +0.02 |+1.2:10%/+0.3-10'°| CONST [+1.8-10'+0.5-10 | +0.5-10°% | - - 0.86
18 <-65>(S) 0.1 +2 CONST | +54 | CONST| =100 | CONST — — 0.87
19 |[F'<t8F>](1/Xy)| £0.01 | £0.006 | CONST [+0.7-10°|+0.4-107| - - - - 0.78
20 [F'<+SF>|(F) | £0.02 | £0.004 | £0.0002 | £2-10°° - - - — — 0.77
20 |[F'<-6F>](1/X,) | £0.008 | £0.003 | CONST |+0.3-107°| +2.10° — - - - 0.94
22 [F'<-6F>](F) | #0.01 | #0.002 | +1-10* | +1.10°° - - - - — 0.92
23 [S'<+55>](Re) | 0.2 |£0.2-107* £0.4-107° [£0.6-107'% CONST |+0.2-102*| £0.6-10°° | CONST |+0.5-10*| 0.97
24 [S'<+55>1S) | NA NA NA NA NA NA - - - 0.97
25 [S'<-65>](Re) | +0.06 |+0.3-107°|+0.5-107'°| CONST |+0.2.102°|+0.2-10%¢ - — - 0.97
26 [S'<-55>](S) |CONST|CONST| =£82 |CONST| #572 | +549 +208 - - 0.97
*NA: Not Applicable, the significant digits employed in the parameters of tab. 2 were more than what fitting errors indicate
CONST: Constant, respective parameter in tab. 2 was taken as constant
Table 3. Validity ranges for eqs. (11) to (26) 10+
Equation number Valid for 9
11 and 19 1/X,in [0.118, 87.7] e
12 and 20 Fin [0.999, 63.4] 5; ]
13 and 21 1/X, in [0.105, 90.1] ¥
14 and 22 Fin [0.999, 63.4] 5 9
15 and 23 Re in [22290, 422616] v 54
16 and 24 S'in [0.108, 0.777] 4+
17 and 25 Re in [18393, 321386] 34
18 and 26 S'in [0.108, 0.777] 5] L .
. L L .
garding the uncertainty, in the supposed level k= 1, of the i
Reynolds number factor F' and the suppression factor S 9 ' ‘ : 4 ' ' ) L
0 10 20 30 40 50 60 70 _ 80

used in the Chen correlation [1, 2]. These equations
could be used to estimate at least a part of the uncertainty
of this particular correlation, thus giving the scientific
community a chance to use the correlation appropriately
or even disregard it in favor of alternatives, a good sum-
mary and comparison of which could be found in [18].
The analysis resulting in these uncertainty equations re-
veals that the positive part of the uncertainties <+ F> and
<+0.5> is not equal to the respective negative part <-0F>
and <-0S5>.; in fact, the positive part is almost always
greater than the negative one.

This raises questions about the validity and ap-
plicability of eq. (8), on which the present study is
largely based. This discrepancy over symmetry could
be attributed not only to the actual experimental data
but also to the graphical nature of the data used for all
calculations. Figures 3 and 4 as well as tab. 4 summa-
rize the statistics for the quantity <+6F>/<-6F> and
the quantity <+6S>/<-65>. It becomes evident that
both quantities are statistically different than unity.
Moreover, and following figs. 3 and 4 and tab. 4, this
discrepancy does not seem to be manageably close to
"

Figure 3. Ratio <+ F>/<-6 F> vs. factor F: there is an
obvious but small positive discrepancy from "1"

10 7

<+0S>/<—0S>

Figure 4. Ratio <+55>/<-65> vs. factor S: there is an
obvious and great positive discrepancy from "1"
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Table 4. Statistics of <+5 F>/<-0F> and <+58>/<-58> 107
<+OF>/<-5F> <+0S5>/<—dS> & <+085/8
N 27 36 > 08 .
Mean 1.3 2.8 B m B
e .
Std.dev 0.3 1.3 E 0.6 . S
Minimum 0.8 1.1 e | o, @ Ditols
Median 1.3 2.7 3 - /
: C 0.4 g o .
Maximum 2.1 5.7 P "
) 0.2- = ok E
Therefore, two options may be used: Invoke eq. =
(8) using the maximum of the two uncertainties, i.e., in
0.0 T T T T T T —, T T v T T T T 1

most cases, <t6F> and <+0.5>. This is the most usual
approach to be on the safe side and Invoke equation (8)
twice, once using <+0F> and <+6S> and once using
<-0F> and <-05>, thus resulting in an estimated un-
certainty range.

The parametric equations for <6F> are given
once as a function of 1/X;, and once as a function of F,
to provide room for implementations originating from
different viewpoints. The same applies to the <65>
equations, which are provided as functions of
Reynolds number or S. For those interested in the rela-
tive uncertainty the authors of this work provide a set
of respective equations, as in the previous section.

Due to the nature of figs. 1 and 2 being log-log
and log-linear respectively, and due to the digitization
process, the research team doubled-checked the fitting
results visually, so that deviations not obvious in the
numerical results could be verified independently.
This process resulted that not all fitting parameters
could be considered within error. Some should be
taken as constants (CONST, i.e., constant, in tab. 2) or
with more significant digits than their standard error
dictates (NA, i.e., Not Applicable, in tab. 2).

It becomes evident from relative uncertainties
that the largest part of the Chen correlation uncertainty
attributed to factors F'and S'is due to the uncertainty of
factor S. Figure 5 gives a visual representation of this
conclusion. Therefore, and given the square power in
eq. (8) one could consider only the <+5.5> component
of the uncertainty for factors 7 and S and still be close
to the maximum safe side as in first comment.

Figures 6 to 9 give a visual representation of the
quality of the <+0 F> and <+0.S> uncertainties calcula-
tions using equations (12), (13), (16), (17), (20), (21),
(24) and (25). The <-0F> and <-05> uncertainties
equations were not considered since they are consider-
ably smaller and not on the safe side. In detail:

Figure 6 presents, against data, the worst of the
function fitting (yet, still, very good) for <+t6F> and
particularly for eq. (21).

Figure 7 presents, against data, the second worst
of the function fittings for eq. (16).

Figure 8 presents in actual fig. 1, the function fit-
ting of eq. (13) as being one of the best.

Finally and similarly, fig. 9 presents in actual fig.
2, the function fitting of eq. (25), once more as being
one of the best.

00 02 04 06 gof 20

Figure 5. Relative uncertainty <+55>/S is in most cases
significantly greater than relative uncertainty <+ F>/F

0.84
0.74

0.6

[<+0F>/F] (F)

0.1+

0.0 T T T T T T T 1

Figure 6. Line of eq. (20) vs. actual data collected from
fig. 1. Worst R” equal to 0.77

0.74
0.6+

0.59

<+0S>(Re)

0.4+

0.34

0.2

0.14

0.0 T T T T T 1
0.00 7.50-10°  1.50-10° 2.25.10° 3.00-10° 3.75-10° 4.50-10°
Re

Figure 7. Line of eq. (15) vs. actual data collected from
fig. 2. Second worse R* equal to 0.91

Overall, and without any hesitation, it could be
argued that the uncertainties found for the Chen corre-
lation for the boiling heat transfer coefficient at satu-
rated flow [1, 2] agree well with the discrepancies
found for this very correlation against experimental
data, as thoroughly reported in [18].
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1 2
10 /X 10

Figure 8. Line of eq. (12) on the actual graph of fig. 1.
R equal to 0.99

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2¢
0.1

0.0

10 10° Re 10°

Figure 9. Line of eq. (24) on the actual graph of fig. 2.
R*is equal to 0.97
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Exaexrtpa 1. ITYJIOIIY XY, Huk I1. IETPOITYJIOC

TEXHUYKA BEJEIKA O HEOJAPEGLEHOCTU YEHOBE KOPEIAIIMJE 3A
KOEOUIINIEHT IIPEHOCA TOIUIOTE KIbYYAIBA TIPU 3ACUWREHOM ITPOTOKY

Tako3Bana Yenosa xopeaayuja 3a Koe(pUIMjeHT IPEeHOCA TOIJIOTE Kibyuyama MpH 3aciheHOM
IIPOTOKY Off 06jaBsbuBama 1966. roguHe, yriIaBHOM ce HaBOJU Kao jef{Ha Off HajyClelHujux Te Bpcre. Kao
IITO je MO3HATO, 3aCHABA CE Ha cabUpamy YIaHOBA KOjH CE OTHOCE Ha MIPEHOC TOIJIOTE Y TEYHOM JENy U
MpeHoc TomioTe y napHoM aeny. Oprosapajyhe dopmyiie yribydyjy u Pejaonncos gakrop F u dakrop
noTucka S. Y To BpeMe, UeH je npuxsaTtuo fa ce F u S uzBeny rpacduuku. Mnax, u yriuaBHOM y pauyHCKe
CBpXe€, MPEATIOKEHO je HEKOIMUKO je[lHaulHa KOje allpoKCUMUpajy oBa ABa ¢pakTopa. OBe jeqHauuHe Cy
IIPOBEPEHE Ha TAYHOCT U IPEIKe Y Kylaky U cajia Cy INUpoKo npuxsahene. Mebyrnm, Hitje 6110 MOKyIIaja
fa ce pesynTaTd YeHoBe Kopenanuje MOBEXY ca O4eKHBaHOM Heofpebenomrhy. Il oBor KpaTkor
U3BeITaja je ja ce oopaau YeHoBa Kopesaluja y CMUCTY FseHe HECUTYPHOCTHU 3aCHOBAaHE Ha HEU3BECHOCTH
¢akropa Fu S. Heoxpebenoctu F u S usBenene cy qururanso u3 rpacuxa F u S y opurunanaom pany Yena
n3 1966. ropuae. Hakon furntanu3anuje mopany o Heoapehenoctn o6pabenu cy a 6u ce gobmie popmyiie
HeoapebeHocTn y nonmmHOMUjaTHOM 00uKy. [IpuxBaheHo je ma je amBo Heoapehenoctn ® u S, k = 1.

Kmwyune peuu: Yenosa xopeaayuja, poitiok Kawyuarka upu 3acubery, kKoeguvujernit ilpeHoca
wotinoitie, Pejroadcos ¢axiiiop, ¢paxitiop tottiucka




