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The so-called Chen cor re la tion for the boil ing heat trans fer co ef fi cient at sat u rated flow has
been, since 1966, the year of its pub li ca tion, largely cited as one of the most suc cess ful of its
kind. As well known, it is based on add ing terms re spec tive to heat trans fer in the liq uid part
and heat trans fer in the steam part. The re spec tive for mu lae in cor po rate both the Reynolds
num ber fac tor F and the sup pres sion fac tor S. At the time, Chen ac cepted F and S to be de -
rived graph i cally. Nev er the less, and mainly for com pu ta tional pur poses, sev eral equa tions
have been pro posed ap prox i mat ing these two fac tors. These equa tions have been re viewed for
ac cu racy and ty pos and are now widely ac cepted. How ever, there has not been any at tempt to
as so ci ate the re sults of the Chen cor re la tion with the ex pected un cer tainty. The ob jec tive of
this short re port is to pro cess the Chen cor re la tion in terms of its un cer tainty based on the un -
cer tainty of fac tors F and S. The un cer tain ties of F and S were de rived dig i tally from the
graphs of F and S in the orig i nal work of Chen of 1966. Fol low ing digitization the un cer tainty 
data were pro cessed to pro vide un cer tainty for mu lae in poly no mial form. It was ac cepted that 
the un cer tainty level of F and S was k =1.

Key words: Chen cor re la tion, flow boil ing at sat u ra tion, heat trans fer co ef fi cient,
Reynolds num ber fac tor, sup pres sion fac tor

IN TRO DUC TION

The Chen cor re la tion for the heat trans fer co ef fi -
cient of sat u rated flow boil ing, as in [1, 2], is one of the
most widely used in flow boil ing heat trans fer prob -
lems. As per to day's (2024) avail able data it has been
cited about 3000 times (as per the Google Scholar data
in early 2024). Ac cord ing to this cor re la tion, two-phase
flow boil ing heat trans fer co ef fi cient h could be de -
scribed by the heat trans fer of forced con vec tion (fc)
within the sat u rated liq uid and the heat trans fer of sat u -
rated nu cle ate boil ing (nb). The two com po nents act in
an ad di tive man ner and their weight in the sum could be
ac counted us ing the Reynolds num ber fac tor F and the
sup pres sion fac tor S. There fore, it is

h Fh S h fc nb (1)

Chen [2] suc cess fully sug gested that the hfc
com po nent could be de scribed us ing the Dittus and
Boelter equa tion [3].

Fur ther, he suc cess fully ac cepted that the hnb
could be de ter mined by the Forster and Zuber equa tion 
[4]. The de tails of both equa tions are avail able in their
orig i nal pub li ca tions and the suc ces sive pub li ca tions
men tion ing the Chen cor re la tion. How ever, the hfc
com po nent is a func tion of a liq uid Reynolds num ber
Rel as pro vided by the for mula
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where x is the qual ity of the steam, G [kgm–2s–1] – the
mass flux, Dh [m] – the hy drau lic di am e ter, and ml

[Pas–1] – the dy namic vis cos ity of the liq uid.
Chen [2] fur ther sug gested that there ex ist

graph i cal func tions for the Reynolds num ber fac tor F,
fig. 1 and the sup pres sion fac tor S, fig. 2. The graphs in 
figs. 1 and 2 were de rived heu ris ti cally based on nu -
mer ous ex per i men tal data. Fig ure 1 is a plot of F vs the
re cip ro cal of the Martinelli pa ram e ter 1/Xtt cal cu lated
by
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where r [kgm–3] is the den sity, g – the gas eous phase,
and l – the liq uid phase

Fig ure 2 is a plot of S vs. the ef fec tive two-phase
Reynolds num ber. This ef fec tive Reynolds is a func -
tion of F as in

Re Re . l F 1 25 (4)

In figs. 1 and 2 the curves are graph i cal best fits
for F and S re spec tively, while the shaded ar eas ac -
count for the re spec tive de vi a tion <+dF>, <–dF> and
<+dS>, <–dS> around the fit ting func tions.

Chen [2] did not pre pare any equa tions for these
best fits or de vi a tions. How ever, and for ob vi ous rea -
sons, oth ers have pro posed in suc ces sion sev eral such
equa tions as best fits for F and S. A dif fer ent Chen and
Fang [5] has pre sented and crit i cally re viewed all up to 
the then-ex ist ing ex pres sions for F and S and com -
pared these ex pres sions with the orig i nal graphs in [2]. 
It could be said, and this is ac cepted in this study, that
the most ac cu rate ex pres sion for F could be
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i.e., the one pro posed and agreed in [6-16]. Fur ther
dis cus sion on the ac cu racy of this ex pres sion can be
found in [5].

It could be said also, and this is ac cepted in this
study as well, that the most ac cu rate ex pres sion for S
could be the one pro posed in [13]
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where ReTP is the ef fec tive two-phase Reynolds num -
ber as in

Re Re .
TP l 10 4 1 25F (7)

Fur ther dis cus sion on the ac cu racy of this ex -
pres sion could be also found in [5]. How ever, up to
now (2024) it seems that no body would care to ef fec -
tively ad dress the pre ci sion of the graphs and the pro -
vided ex pres sions. There fore, this short re port at -
tempts to ex am ine this prob lem.

METH ODS

As well known in the re spec tive the ory, for a
func tion q of sev eral vari ables x, y,…, z, which is com -
puted as q(x,…, z), x, y,…, z could be mea sured un cer -
tain ties dx,…, dz. These un cer tain ties, as per [17], may 
in clude both Type A and Type B com po nents and are
used to quan tify the un cer tainty of q
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Equa tion (8) stands if the mea sure ment of x (or y
or z, etc.) has the form xbest  dx. Then the best es ti mate
of q is qbest = q(xbest, ybest, etc.). Since, for the ex am ined
case, F and S have been es ti mated by sev eral con tri bu -
tors us ing var i ous meth ods, there is trust that the rel e -
vant er rors are not re lated. Ap ply ing eq. (8) to eq. (1) at
least part of the un cer tainty of the heat trans fer co ef fi -
cient could be ob tained as a func tion of the un cer tain ties 
of quan ti ties F and S. This un cer tainty could be ac -
cepted as to tal un cer tainty un der the as sump tion that
there is no sig nif i cant un cer tainty con tri bu tion from
other pa ram e ters in volved in the cal cu la tion. There fore

d d dh h F h S  ( ) ( )fc nb
2 2 (9)

with un knowns dF and dS, for which there ex ist only
graph i cal rep re sen ta tions and no math e mat i cal for mu -
lae.

In this work, the un cer tainty ranges of F and S
have been dig i tized from the graphs of figs. 1 and 2.
Then, the data for <dF> and <dS> de rived from the
digitization were fit ted to poly no mial cor re la tions as
func tions. In the case of F, <dF> was cal cu lated as a
func tion of F and as a func tion of 1/Xtt. In the case of S,
<dS> was cal cu lated as a func tion of S and as a func -
tion of ReTP.
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Fig ure 1. Reynolds num ber fac tor, F [5]

Fig ure 2. Sup pres sion fac tor, S [5]



It goes with out say ing that there were no weights
as signed for dif fer ent val ues of <dF> and <dS> since 
such weights are un known. It is un der stand able from
fig. 1 that for each F and each 1/Xtt, there would be two
poly no mial fit tings, one for <+dF> and one for <–dF>.
In the same way, it is de rived from fig. 2 that for each S
and each ReTP, there would be two poly no mial fit tings,
one for <dS> and one for <–dS>. Due to the ob vi ous
shapes of <+dF>, <–dF>, <+dS> and <–dS> the poly -
no mi als cho sen were of sig nif i cant or der. How ever, not
in ev ery case, all power terms were proven sig nif i cant
(i.e., their as so ci ated fit ting er rors were too big for some 
power pa ram e ters to be con sid ered).

RE SULTS

The pre vi ously men tioned ob tained poly no mial
func tions are given col lec tively and as num bered
equa tions in tab. 1.

Equa tions num bered in tab. 1 are in ter preted in
the fol low ing ge neric manner
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Ta ble 2 pres ents the stan dard er rors of pa ram e -
ters Bi as these re sulted from the fit ting pro ce dures.
Fur ther, tab. 2 con tains the Adj. R2 co ef fi cient of de ter -
mi na tion for all fit tings.

Fol low ing eq. (10) and tabs. 1 and 2 it is eas ily
de rived that, for ex am ple, eq. (11) could be writ ten as
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while, once more, for ex am ple, eq. (20) could be writ -
ten as
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It has to be men tioned that, since all equa tions re -

sulted from the dig i tal re pro cess ing of figs. 1 and 2,
there should ex ist a va lid ity re gion for each of the
above equa tions. This is ac counted for in tab. 3.

All fit tings re gard ing the un cer tainty of F were
based on N = 27 pairs of dig i tized co or di nates, while all
fit tings re gard ing the un cer tainty of S were based on N =
=.36 pairs. The nec es sary val ues of F were ob tained from 
eq. (5) and the nec es sary val ues of S from eq. (6). Ob tain -
ing F and S from the graphs in figs. 1 and 2 re spec tively
in stead of ob tain ing them from eqs. (5) and (6), re sulted
in al most iden ti cal fit tings; the cor re spond ing pa ram e ters 
were found to be slightly dif fer ent within er ror. All fit -
tings were per formed us ing the Levenberg – Marquardt
method and the com mer cially avail able soft ware
OriginPro 9.0.0 Pro (32-bit) SR2 b87 by OriginLab Cor -
po ra tion (http://www.OriginLab.com).

The fit tings for <dF> pres ent an ex cel lent R2  0.97;
the fit tings for <dS> pres ent a very good R2  0.85; the fit -
tings for <dF>/F pres ent a very good R2  0.77; fi nally, the
fit tings for <dS>/S pres ent a very good R2 0.97.

DIS CUS SION AND CON CLU SIONS

Within this study, sev eral para met ric equa tions in
poly no mial form have been pre pared and pre sented re -
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Ta ble 1. Pa ram e ters of the poly no mial func tions for <dF> and <dS
Equa tion
number Func tion B0 B1 B2 B3 B4 B5 B6 B7 B8

11 <+dF>(1/Xtt) 0.8 0.30 –0.0040 3.4–5 – – – – –

12 <+dF>(F) 0.3 0.32 –0.005 8–5 – – – – –

13 <–dF>(1/Xtt) –6–4 – – – – – –

14 <–dF>(F) 0.16 –4–4 – – – – – –

15 <+dS>(Re) 109 10–14 10–19 – –1.76669–30 2.31166–36 –1.25773–42

16 <+dS>(S) 1107

17 <–dS>(Re) –0.09 8.9–6 –1.8–10 10–15 –7.5–21 1.6–26 –1.3–32

18 <–dS>(S) –0.4 11 309 522 – –

19 [F–1<+dF>](1/Xtt) 0.49 –0.032 –2.1–5 1.1–7 – – – –

20 [F–1<+dF>](F) 0.51 –0.02 0.0006 –5–6 – – – – –

21 [F–1<–dF>](1/Xtt) 0.413 –0.032 –1.8–5 10–8 – – – –

22 [F–1<–dF>](F) 0.44 –0.028 8–4 –7–6 – – – – –

23 [S–1<+dS>](Re) –1.4 1.2–4 –3.1–9 4.0–14 10–19 1.2–24 –2.9–30 E-36 –2.0–42

24 [S–1<+dS>](S) – – –

25 [S–1<–dS>](Re) –0.25 2.1–5 –3.8–10 3.195–15 –1.1–20 1.3–26 – – –

26 [S–1<–dS>](S) –0.22 30.3 –289 1136.8 –2207 2092 –773 – –



gard ing the un cer tainty, in the sup posed level k = 1, of the 
Reynolds num ber fac tor F and the sup pres sion fac tor S
used in the Chen cor re la tion [1, 2]. These equa tions
could be used to es ti mate at least a part of the un cer tainty
of this par tic u lar cor re la tion, thus giv ing the sci en tific
com mu nity a chance to use the cor re la tion ap pro pri ately
or even dis re gard it in fa vor of al ter na tives, a good sum -
mary and com par i son of which could be found in [18].
The anal y sis re sult ing in these un cer tainty equa tions re -
veals that the pos i tive part of the un cer tain ties <+dF> and 
<+dS> is not equal to the re spec tive neg a tive part <–dF>
and <–dS>.; in fact, the pos i tive part is al most al ways
greater than the neg a tive one.

This raises ques tions about the va lid ity and ap -
pli ca bil ity of eq. (8), on which the pres ent study is
largely based. This dis crep ancy over sym me try could
be at trib uted not only to the ac tual ex per i men tal data
but also to the graph i cal na ture of the data used for all
cal cu la tions. Fig ures 3 and 4 as well as tab. 4 sum ma -
rize the sta tis tics for the quan tity <+dF>/<–dF> and
the quan tity <+dS>/<–dS>. It be comes ev i dent that
both quan ti ties are sta tis ti cally dif fer ent than unity.
More over, and fol low ing figs. 3 and 4 and tab. 4, this
dis crep ancy does not seem to be man age ably close to
"1".
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Ta ble 2. Re spec tive fit ting er rors of the pa ram e ters pre sented in tab. 1

Equa tion
number Func tion B0 B1 B2 B3 B4 B5 B6 B7 B8 R2

11 <+dF>(1/Xtt) 0.1 0.03 0.0009 0.710–5 – – – – – 0.99

12 <+dF>(F) 0.1 0.04 0.001 210–5 – – – – – 0.99

13 <–dF>(1/Xtt) CONST 110–4 – – – – – –

14 <–dF>(F) CONST ±0.01 210–4 – – – – – – 0.98

15 <+dS>(Re) NA* NA NA NA NA NA NA NA NA

16 <+dS>(S) NA NA NA NA NA NA NA NA – 0.96

17 <–dS>(Re) 0.02 1.210–6 0.310–10 CONST 1.810–21 0.510–26 0.510–32 – – 0.86

18 <–dS>(S) 0.1 2 CONST 54 CONST 100 CONST – – 0.87

19 [F–1<+dF>](1/Xtt) 0.01 0.006 CONST 0.710–5 0.410–7 – – – – 0.78

20 [F–1<+dF>](F) 0.02 0.004 0.0002 210–6 – – – – – 0.77

20 [F–1<–dF>](1/Xtt) 0.008 0.003 CONST 0.310–5 210–8 – – – – 0.94

22 [F–1<–dF>](F) 0.01 0.002 110–4 110–6 – – – – – 0.92

23 [S–1<+dS>](Re) 0.2 0.210–4 0.410–9 0.610–14 CONST 0.210–24 0.610–30 CONST 0.510–42 0.97

24 [S–1<+dS>](S) NA NA NA NA NA NA – – – 0.97

25 [S–1<–dS>](Re) 0.06 0.310–5 0.510–10 CONST 0.210–20 0.210–26 – – – 0.97

26 [S–1<–dS>](S) CONST CONST ±82 CONST 572 549 ±208 – – 0.97

*NA: Not Ap pli ca ble, the sig nif i cant dig its em ployed in the pa ram e ters of tab. 2 were more than what fit ting er rors in di cate
  CONST: Con stant, re spec tive pa ram e ter in tab. 2 was taken as con stant

Ta ble 3. Va lid ity ranges for eqs. (11) to (26)

Equa tion number Valid for
11 and 19 1/Xtt in [0.118, 87.7]
12 and 20 F in [0.999, 63.4]
13 and 21 1/Xtt in [0.105, 90.1]
14 and 22 F in [0.999, 63.4]
15 and 23 Re in [22290, 422616]
16 and 24 S in [0.108, 0.777]
17 and 25 Re in [18393, 321386]
18 and 26 S in [0.108, 0.777]

Fig ure 3. Ra tio <+dF>/<–dF> vs. fac tor F: there is an
ob vi ous but small pos i tive dis crep ancy from "1"

Fig ure 4. Ra tio <+dS>/<–dS> vs. fac tor S: there is an
ob vi ous and great pos i tive dis crep ancy from "1"



There fore, two op tions may be used: In voke eq.
(8) us ing the max i mum of the two un cer tain ties, i.e., in 
most cases, <+dF> and <+dS>. This is the most usual
ap proach to be on the safe side and In voke equa tion (8) 
twice, once us ing <+dF> and <+dS> and once us ing
<–dF> and <–S>, thus re sult ing in an es ti mated un -
cer tainty range.

The para met ric equa tions for <dF> are given
once as a func tion of 1/Xtt and once as a func tion of F,
to pro vide room for im ple men ta tions orig i nat ing from
dif fer ent view points. The same ap plies to the <dS>
equa tions, which are pro vided as func tions of
Reynolds number or S. For those in ter ested in the rel a -
tive un cer tainty the au thors of this work pro vide a set
of re spec tive equa tions, as in the pre vi ous sec tion.

Due to the na ture of figs. 1 and 2 be ing log-log
and log-lin ear re spec tively, and due to the digitization
pro cess, the re search team dou bled-checked the fit ting 
re sults vi su ally, so that de vi a tions not ob vi ous in the
nu mer i cal re sults could be ver i fied in de pend ently.
This pro cess re sulted that not all fit ting pa ram e ters
could be con sid ered within er ror. Some should be
taken as con stants (CONST, i.e., con stant, in tab. 2) or
with more sig nif i cant dig its than their stan dard er ror
dic tates (NA, i.e., Not Ap pli ca ble, in tab. 2).

It be comes ev i dent from rel a tive un cer tain ties
that the larg est part of the Chen cor re la tion un cer tainty 
at trib uted to fac tors F and S is due to the un cer tainty of
fac tor S. Fig ure 5 gives a vi sual rep re sen ta tion of this
con clu sion. There fore, and given the square power in
eq. (8) one could con sider only the <+dS> com po nent
of the un cer tainty for fac tors F and S and still be close
to the max i mum safe side as in first com ment.

Fig ures 6 to 9 give a vi sual rep re sen ta tion of the
qual ity of the <+dF> and <+dS> un cer tain ties cal cu la -
tions us ing equa tions (12), (13), (16), (17), (20), (21),
(24) and (25). The <–dF> and <–dS> un cer tain ties
equa tions were not con sid ered since they are con sid er -
ably smaller and not on the safe side. In de tail:

Fig ure 6 pres ents, against data, the worst of the
func tion fit ting (yet, still, very good) for <+dF> and
par tic u larly for eq. (21).

Fig ure 7 pres ents, against data, the sec ond worst
of the func tion fit tings for eq. (16).

Fig ure 8 pres ents in ac tual fig. 1, the func tion fit -
ting of eq. (13) as be ing one of the best.

Fi nally and sim i larly, fig. 9 pres ents in ac tual fig. 
2, the func tion fit ting of eq. (25), once more as be ing
one of the best.

Over all, and with out any hes i ta tion, it could be
ar gued that the un cer tain ties found for the Chen cor re -
la tion for the boil ing heat trans fer co ef fi cient at sat u -
rated flow [1, 2] agree well with the dis crep an cies
found for this very cor re la tion against ex per i men tal
data, as thor oughly re ported in [18].
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Ta ble 4. Sta tis tics of <+dF>/<–dF> and <+dS>/<–dS>

<+dF>/<–dF> <+dS>/<–dS>
N 27 36

Mean 1.3 2.8
Std.dev 0.3 1.3

Minimum 0.8 1.1
Me dian 1.3 2.7

Maximum 2.1 5.7

Fig ure 5. Rel a tive un cer tainty <+dS>/S is in most cases
sig nif i cantly greater than rel a tive un cer tainty <+dF>/F

Fig ure 6. Line of eq. (20) vs. ac tual data col lected from
fig. 1. Worst R2 equal to 0.77

Fig ure 7. Line of eq. (15) vs. ac tual data col lected from
fig. 2. Sec ond worse R2 equal to 0.91
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Fig ure 8. Line of eq. (12) on the ac tual graph of fig. 1.
R2 equal to 0.99

Fig ure 9. Line of eq. (24) on the ac tual graph of fig. 2.
R2 is equal to 0.97
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Elektra D. PULOPULU, Nik P. PETROPULOS

TEHNI^KA  BELE[KA  O  NEODRE\ENOSTI  ^ENOVE  KORELACIJE  ZA
KOEFICIJENT  PRENOSA  TOPLOTE  KQU^AWA  PRI  ZASI]ENOM  PROTOKU

Takozvana ^enova korelacija za koeficijent prenosa toplote kqu~awa pri zasi}enom
protoku od objavqivawa 1966. godine, uglavnom se navodi kao jedna od najuspe{nijih te vrste. Kao
{to je poznato, zasniva se na sabirawu ~lanova koji se odnose na prenos toplote u te~nom delu i
prenos toplote u parnom delu. Odgovaraju}e formule ukqu~uju i Rejnoldsov faktor  i faktor
potiska . U to vreme, ^en je prihvatio da se  i  izvedu grafi~ki. Ipak, i uglavnom u ra~unske
svrhe, predlo`eno je nekoliko jedna~ina koje aproksimiraju ova dva faktora. Ove jedna~ine su
proverene na ta~nost i gre{ke u kucawu i sada su {iroko prihva}ene. Me|utim, nije bilo poku{aja
da se rezultati ^enove korelacije pove`u sa o~ekivanom neodre|eno{}u. Ciq ovog kratkog
izve{taja je da se obradi ̂ enova korelacija u smislu wene nesigurnosti zasnovane na neizvesnosti
faktora  i . Neodre|enosti  i  izvedene su digitalno iz grafika  i  u originalnom radu ̂ ena
iz 1966. godine. Nakon digitalizacije podaci o neodre|enosti obra|eni su da bi se dobile formule
neodre|enosti u polinomijalnom obliku. Prihva}eno je da je nivo neodre|enosti F i , k = 1.

Kqu~ne re~i: ^enova korelacija, protok kqu~awa pri zasi}ewu, koeficijent prenosa
..........................toplote, Rejnoldsov faktor, faktor potiska


